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Abstract

This is the report of a study group that was asked to review recent work
on the issue of turbulent momentum transport in gyrokinetic theory, forms
of gyrokinetics that lead to a momentum conservation law, the order of
accuracy needed to adequately predict momentum transport, and related
topics. Very subtle issues are involved. Agreement is found with recent
work that has argued that a very high order of accuracy (beyond what has
been calculated or implemented) would be required in the low-flow gyro-
Bohm ordering regime if one were to try a standard gyrokinetic approach
using the gyrokinetic Poisson equation to determine the long-wavelength
potential on the transport time scale. That work presents an alternate
approach that directly employs a momentum conservation law in order
to reduce the order of accuracy required. Another method is to couple a
gyrokinetic code on the short turbulence time scale with a transport code
for the longer transport time scale. Other regimes are also of interest
and lead to somewhat simpler, though still challenging, equations. While
progress has been made and there are some definite conclusions that can
be stated at the present time, there are still important questions that are
unsolved and momentum transport remains an area of ongoing research.
The report includes extensive tutorial material that provides some of the
background needed for an understanding of recent papers on gyrokinetics.

∗This version omits certain calculations, such as the derivation of the gyrocenter momentum
conservation law from the particle moment equations, and in general should be considered to
be a work in progress. It is made available in the hope that it may be useful, but with the
understanding that it is not a fully completed body of work. Someday an updated version of
this report may be issued with additional calculations included.

†E-mail: krommes@princeton.edu
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1



Contents

1 Prologue 5
1.1 A few words about emphasis and balance . . . . . . . . . . . . . 5
1.2 Reading guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Charge letter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Introduction 9
2.1 Motivations, and brief statement of the problem . . . . . . . . . 9
2.2 Momentum flux in the low-flow ordering . . . . . . . . . . . . . . 12

2.2.1 Gyro-Bohm scaling and momentum flux . . . . . . . . . . 12
2.2.2 Symmetry breaking and momentum flux . . . . . . . . . . 15

2.3 Momentum conservation and axisymmetry . . . . . . . . . . . . . 17
2.4 Global versus local, and full-F versus δF formulations . . . . . . 17
2.5 Why has there been a controversy? . . . . . . . . . . . . . . . . . 18
2.6 The utility of modern gyrokinetics . . . . . . . . . . . . . . . . . 21

3 Review of gyrokinetic history and concepts 23
3.1 Fundamental concepts . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 The magnetic moment . . . . . . . . . . . . . . . . . . . . 24
3.1.2 Lie transforms . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.3 Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Derivation of the gyrokinetic–Poisson system . . . . . . . . . . . 30
3.3 Symplectic dynamics and the 1-form method . . . . . . . . . . . 35
3.4 Gyrokinetic field theory . . . . . . . . . . . . . . . . . . . . . . . 36

4 Form and interpretation of the gyrokinetic momentum conser-
vation law 37
4.1 Momentum equation for particles . . . . . . . . . . . . . . . . . . 37
4.2 Angular momentum conservation from the gyrokinetic equation . 40

4.2.1 Useful identities . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.2 E ×B flows and polarization current . . . . . . . . . . . 41
4.2.3 Gyrocenter parallel flow . . . . . . . . . . . . . . . . . . . 42
4.2.4 Simplified momentum equation . . . . . . . . . . . . . . . 44
4.2.5 Approximate derivation of the angular momentum con-

servation law using particle variables . . . . . . . . . . . . 47
4.2.6 Energetic consistency and momentum conservation . . . . 48

5 Discussion of the ordering issues, and Answers to the Charge
questions 50
5.1 The original ordering estimates . . . . . . . . . . . . . . . . . . . 50

5.1.1 Discussion of the moment method . . . . . . . . . . . . . 51
5.1.2 Full-F : Primitive ordering considerations . . . . . . . . . 51

5.2 The Chapman–Enskog-like approach of Parra & Calvo . . . . . . 54
5.3 The gyrokinetic momentum conservation law of Scott & Smirnov 55

2



5.4 The Ordering Problem Restated . . . . . . . . . . . . . . . . . . 58
5.5 Answers to the Charge . . . . . . . . . . . . . . . . . . . . . . . . 60

6 Discussion 61
6.1 Outstanding questions . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2 Some history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Acknowledgements 66

A Generalized coordinates 66
A.1 Basis vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
A.2 Metric coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . 67
A.3 The Jacobian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
A.4 Dot and cross products . . . . . . . . . . . . . . . . . . . . . . . 68
A.5 Gradient, curl, and divergence . . . . . . . . . . . . . . . . . . . . 69
A.6 Vector fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

B Magnetic fields 71
B.1 Representation of magnetic fields . . . . . . . . . . . . . . . . . . 71
B.2 Magnetic field lines . . . . . . . . . . . . . . . . . . . . . . . . . . 71
B.3 Flux-surface average . . . . . . . . . . . . . . . . . . . . . . . . . 71

C Differential forms 72
C.1 Definition of differential form . . . . . . . . . . . . . . . . . . . . 72

C.1.1 1-forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
C.1.2 p-forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

C.2 Interior product . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
C.3 Exterior derivative . . . . . . . . . . . . . . . . . . . . . . . . . . 74

D Pullback transformations 75
D.1 Pullback transformation on functions . . . . . . . . . . . . . . . . 75
D.2 Pushforward of vectors . . . . . . . . . . . . . . . . . . . . . . . . 76
D.3 Lie derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

D.3.1 Lie derivative of functions and of 1-forms . . . . . . . . . 78
D.3.2 Lie transforms . . . . . . . . . . . . . . . . . . . . . . . . 79

E Symplectic structure and noncanonical coordinates 79
E.1 Noncanonical Hamiltonian mechanics . . . . . . . . . . . . . . . . 80
E.2 Noncanonical Lie perturbation theory . . . . . . . . . . . . . . . 81

F Ponderomotive nonlinearities1 83
F.1 Heuristic discussion of the first-order generating functions . . . . 85
F.2 Systematic derivation of the generating functions . . . . . . . . . 86
F.3 O(ǫ−1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

1Some of the material of this section has been distilled into the Brief Communication by
Krommes (2013).

3



F.4 O(ǫ0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
F.5 O(ǫ1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
F.6 O(ǫ2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

F.7 Interpretation of H
(2)

. . . . . . . . . . . . . . . . . . . . . . . . 92

G Eulerian variational principle for gyrokinetics 94
G.1 Eulerian and Lagrangian variations . . . . . . . . . . . . . . . . . 94
G.2 Brizard’s variational principle . . . . . . . . . . . . . . . . . . . . 94

H Noether’s theorem 98
H.1 General proof of Noether’s theorem . . . . . . . . . . . . . . . . . 98
H.2 Constrained variations and Noether’s theorem . . . . . . . . . . . 100

I Direct derivation of the gyrokinetic momentum conservation
law, including all magnetic inhomogeneity effects 101
I.1 Summing the parallel and perpendicular evolutions . . . . . . . . 101
I.2 Writing the pure Reynolds stress in conservative form . . . . . . 105

J Detailed analysis of the gyrokinetic conservation law for toroidal
angular momentum 106
J.1 The parallel–perpendicular Reynolds stresses . . . . . . . . . . . 107
J.2 The pure Reynolds stresses . . . . . . . . . . . . . . . . . . . . . 108

J.2.1 The nominal size of the pure Reynolds stresses . . . . . . 108
J.2.2 Are the contributions from H3 smaller than they appear? 111

K Example of Near-Cancellation of Lower-Order Terms 114

L Excerpts from papers related to momentum conservation 117
L.1 Excerpt from Parra (2009)— “Extension of gyrokinetics to trans-

port time scales” . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
L.2 Excerpts from Catto et al. (2008) — “Electrostatic turbulence in

tokamaks on transport time scales” . . . . . . . . . . . . . . . . . 117
L.3 Excerpts from Parra & Catto (2008) — “Limitations of gyroki-

netics on transport time scales” . . . . . . . . . . . . . . . . . . . 118
L.4 Excerpts from Catto et al. (2009) — “Limitations, insights and

improvements to gyrokinetics” . . . . . . . . . . . . . . . . . . . 119
L.5 Excerpts from Parra & Catto (2009a) — “Comment on “On

higher order corrections to gyrokinetic Vlasov-Poisson equations
in the long wavelength limit” [Phys. Plasmas 16, 044506 (2009)]” 122

L.6 Parra & Catto (2009b) — “Gyrokinetic equivalence” . . . . . . . 123
L.7 Excerpts from Parra & Catto (2009c) — “Vorticity and intrinsic

ambipolarity in turbulent tokamaks” . . . . . . . . . . . . . . . . 123
L.8 Excerpt from Parra & Catto (2010a) — “Non-physical momen-

tum sources in slab geometry gyrokinetics” . . . . . . . . . . . . 123
L.9 Excerpts from Parra & Catto (2010b) — “Transport of momen-

tum in full f gyrokinetics” . . . . . . . . . . . . . . . . . . . . . . 125

4



L.10 Excerpts from Parra & Catto (2010c) — “Turbulent transport of
toroidal angular momentum in low flow gyrokinetics” . . . . . . . 125

L.11 Excerpt from Scott & Smirnov (2010) — “Energetic consistency
and momentum conservation in the gyrokinetic description of
tokamak plasmas” . . . . . . . . . . . . . . . . . . . . . . . . . . 126

L.12 Excerpt from Brizard & Tronko (2011) — “Exact momentum
conservation laws for the gyrokinetic Vlasov-Poisson equations” . 126

L.13 Excerpt from Parra & Calvo (2011) — “Phase-space Lagrangian
derivation of electrostatic gyrokinetics in general geometry” . . . 127

L.14 Excerpt from Calvo & Parra (2012) — “Long-wavelength limit of
gyrokinetics in a turbulent tokamak and its intrinsic ambipolarity”128

M Notation 131
M.1 Basic physics symbols . . . . . . . . . . . . . . . . . . . . . . . . 131
M.2 Miscellaneous notation . . . . . . . . . . . . . . . . . . . . . . . . 135

References 137

Index 145

1 Prologue

This report deals with ordering issues relating to gyrokinetic momentum trans-
port. It reflects our understanding of the literature through mid-September,
2013. We believe that the main conclusions here are well founded, as will be
explained further. However, there are still some open questions and there is
ongoing work on various aspects of momentum transport. Specifically, we are
aware of research by Brizard, Calvo, Parra, Scott, and Sugama (and there are
likely others) that is either nearly completed or soon to be published; we have
not seen written details. Therefore, the present document should properly be
considered to be a status report on our own understanding of the issues asso-
ciated with an actively evolving field rather than a review of a fully mature
research topic.

1.1 A few words about emphasis and balance

As explained thoroughly in Sec. 2.1, this report focuses on issues raised by Parra
& Catto in a series of papers dating from about the time of Parra’s PhD dis-
sertation (Parra, 2009). Although we make extensive reference to those papers,
it does not seem necessary to provide a complete review of their methodology,
which has been thoroughly and clearly explained in the original publications.
(Some extended quotations from those are provided in Appendix L.) Instead,
we attempt to provide a slightly different perspective and offer some previously
unpublished insights. Thus we have chosen to conduct much of our discussion
in the framework of the momentum conservation law for gyrocenters that was
originally derived by Scott & Smirnov (2010) and which we consider to be an
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important contribution to the field. Our discussion goes beyond that of Scott
& Smirnov and thus fills a gap in the literature. We do not mean to imply that
proceeding in this way is ‘better’ than the route taken by Parra & Catto, nor
do we wish to diminish in any way the seminal and extensive contributions of
Parra and his collaborators. But as is frequently the case in advanced physics re-
search, it is illuminating to establish consistency between alternate approaches,
and that is what we have tried to do.

1.2 Reading guide

In order to make this report useful to both beginners and experts, it contains a
wealth of material, including extensive sections on technical details of recent gy-
rokinetic (GK) work related to momentum transport as well as tutorial sections
that provide some of the background needed to understand the recent papers.
Much of that can be skipped on an initial reading. For an quick overview,
one can read Secs. 1.3 (p. 6) and 1.4 (p. 8), which serve as an executive sum-
mary; read through Secs. 2.1 (p. 9) and 2.2 (p. 12) for an introduction and
an explanation of the assumptions; then skip to Sec. 5.1.2 (p. 51) to see the
ordering arguments of Parra & Catto presented in a simple way that demon-
strates the need to keep high-order corrections to the Hamiltonian if one is
relying on the gyrokinetic Poisson equation to determine the long-wavelength
potential on transport time scales. Aficionados of gyrokinetic field theory can
peruse Secs. 5.3 (p. 55) and Sec. 5.4 (p. 58), where the ordering arguments are
presented specifically from the point of the gyrokinetic momentum conservation
law originally derived by Scott & Smirnov. A discussion of the outstanding
questions, and an overall summary, are given in Sec. 6 (p. 61). Many technical
details are relegated to the appendices, some of which are pedagogical.

1.3 Charge letter

The GK2 Study Group of the PPPL Theory Department was commissioned by
Riccardo Betti in January, 2011.2 In this section the content of the original
charge letter to the Study Group, including background paragraph and specific
questions, is reproduced verbatim. That letter makes it clear that the goal
of this Study Group was to focus on one specific technical question (related
to the accuracy of gyrokinetics for the description of momentum transport).
It is not within the purview of this report to address the larger universe of
interesting and important issues relating to the applications of gyrokinetics to
magnetic confinement fusion or other related physics areas such as space plasma
physics, or even to consider other momentum-related issues that do not satisfy
the assumptions described below.

2An early version of this report was circulated among a few experts in October, 2011. The
present report is a major expansion of the original version; the main conclusions have not
changed.
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Verbatim copy of the charge letter:

TITLE: Ordering requirements in the gyrokinetic equations for simulations
of turbulence on transport time scales

MEMBERS: G. Hammett, J. Krommes (Chair)

BACKGROUND: It has been recently stated in several articles that the physics
models in current global gyrokinetic codes are not accurate enough to correctly
predict evolution of the momentum profile via solving the quasineutrality equa-
tion over long (i.e. transport) time scales. This conclusion was based upon
the observation that the particle drift velocities apparently need to be com-
puted to high accuracy (up to third order in the normalized Larmor radius,
ρ/a) to correctly predict the radial electric field and, therefore, the transport
of momentum over long time scales. Since flows can have profound effects on
regulating the turbulence level, such high accuracy would be required for that
approach to the gyrokinetic simulation of turbulence. In light of the difficulties
required in deriving a third-order accurate model and in maintaining the re-
quired numerical accuracy, existing gyrokinetic models were deemed inadequate
for simulating turbulence on long time scales. There are very subtle issues here,
and this conclusion has been challenged by other experts. An alternate view is
that second-order gyrokinetics is sufficient to correctly predict the radial electric
field and to simulate turbulence on long time scales. The issue to be addressed
and resolved by the GK2 Study Group concerns the minimum ordering required
in the gyrokinetic equations for correctly predicting turbulent transport on long
time scales.

QUESTIONS TO BE ADDRESSED:

[1] Are the gyrokinetic equations used in existing codes (including GTS,
GYRO, and GTC) adequate to simulate the evolution of turbulence over
transport time scales?

[2] Are second- and/or third-order corrections in the normalized Larmor
radius required for (a) the gyrokinetic equation; (b) the gyrokinetic
Maxwell equations?

[3] If the answer to [2] is positive, is the vorticity equation proposed by
Parra & Catto a possible fix to extend the validity of gyrokinetic codes
to long time scales?

[4] If second-order gyrokinetics is sufficient, what needs to be done to fully
implement this into codes with sufficient numerical accuracy, either
directly or through separate gyrokinetic transport equations for the
long time scale?
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1.4 Summary

Here are concise answers to the previous questions. In the body of the report,
we will provide introductory discussion, background information on some of the
techniques, and a summary of our understanding of the present state of affairs.
Most details and advanced pedagogical material are relegated to appendices.

In addition to the questions identified in the Charge, a more basic question
must be answered first:

[0] Are the physics contents of the particle and the gyrocenter conserva-
tion laws equivalent or different?

The physics contents are equivalent. The mathematical representations
differ.

With question [0] answered, a major source of uncertainty is removed and
one can focus on the original questions:

[1] Are the gyrokinetic equations used in existing codes (including GTS,
GYRO, and GTC) adequate to simulate the evolution of turbulence over
transport time scales?

No existing gyrokinetic code contains all of the terms that are required
for completely consistent simulations of momentum transport in the low-
flow gyro-Bohm regime on transport time scales. However, efforts in that
direction are being made in the context of coupling turbulence-time-scale
gyrokinetic simulations with long-time transport solvers.

It should be noted that most present codes are adequate (perhaps with
some extension to fully incorporate second-order Hamiltonian effects into
the fluxes) to study turbulent momentum fluxes on the shorter turbulence
time scale in the high-flow regime, such as if there is strong beam injection.
Present codes are also adequate to study the particle and heat fluxes on
the shorter turbulence time scale.

[2] Are second- and/or third-order corrections in the normalized Larmor
radius required for (a) the gyrokinetic equation; (b) the gyrokinetic
Maxwell equations?

In principle, under a particular set of assumptions relevant to a specific
physics regime (see Sec. 2.1), third-order corrections are required for the
gyrokinetic equation with a global full-F approach, while second-order
corrections are necessary in the gyrokinetic Maxwell equations. If a fluid
momentum equation is adjoined to the gyrokinetic equation, it is possible
to work to just second order in the kinetic equation (by using a moment
method described by Parra & Catto).

[3] If the answer to [2] is positive, is the vorticity equation proposed by
Parra & Catto a possible fix to extend the validity of gyrokinetic codes
to long time scales?

Yes.
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[4] If second-order gyrokinetics is sufficient, what needs to be done to fully
implement this into codes with sufficient numerical accuracy, either
directly or through separate gyrokinetic transport equations for the
long time scale?

Second-order gyrokinetics should be sufficient if it is coupled directly to
a momentum transport equation, or if one is in a parameter regime that
relaxes the low-flow gyro-Bohm ordering. Second-order effects could be
added in principle to existing codes (along with adding the momentum
equation). The polarization term in the gyrokinetic Poisson equation
should be calculated in a particular way to be consistent. Calculating
the effects of small second-order drifts accurately when they are combined
with larger first-order drifts in the same equation may require higher nu-
merical accuracy than is typical at present. Analysis of the accuracy
requirements for the several types of gyrokinetic codes (which use vari-
ous PIC and continuum discretization and time-integration methods that
possess various conservation properties) should be carried out. The accu-
racy requirements might be more manageable near the plasma edge where
the local ǫ

.
= ρ/L (the ratio of the gyroradius ρ to the local gradient

scale length L) is not as small and there is less separation between the
turbulence and profile time-evolution scales.

2 Introduction

2.1 Motivations, and brief statement of the problem

We consider magnetically confined, toroidal fusion devices. The physics of the
radial electric field and plasma rotation are important for a number of reasons,
including MHD stability and the saturation of microturbulence. Plasmas have
been observed to rotate intrinsically, i.e., spin up in the absence of external
torques, initial mean flow, or flow gradients; such rotation can result from the
presence of turbulence with density or temperature gradients and is a subject
of great current interest.

An important distinction must be made between axisymmetric and nonax-
isymmetric devices. The external magnetic-field configuration of an ideal toka-
mak is axisymmetric (invariant under a toroidal rotation), whereas tokamaks
with magnetic field ripple (or externally imposed 3D magnetic perturbations)
and stellarators are nonaxisymmetric. In the presence of axisymmetry, the
conservation of toroidal canonical angular momentum provides an important
constraint and is the source of the ordering subtleties discussed below. Practi-
cally, it is possible that those subtleties may in some cases be overwhelmed by
the consequences of nonaxisymmetry. However, considerable further research
remains to be done on this point, and in any event it is not the purpose of
this report to discuss all possible physics regimes. The original concerns related
to axisymmetric devices, and we focus on those here. Unless noted otherwise,
toroidal axisymmetry of the background magnetic-field configuration is assumed
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from here on. Also, we shall consider only electrostatic turbulence (E = −∇φ)
for simplicity. Electromagnetic effects have been considered by Scott & Smirnov
(2010).

Low-frequency turbulence with ω ≪ ωci is generally addressed with the gy-
rokinetic formalism, and elaborate computer codes have been constructed to
solve the gyrokinetic equations (coupled to the gyrokinetic Maxwell equations).
Traditionally those codes have been used to study the physics of turbulence
saturation, so they have been generally run through only a few turbulence au-
tocorrelation times. However, modern interest is turning to physics on the
transport time scale on which profiles develop in response to the neoclassical
and turbulence transport processes. Several approaches can be envisaged:

1. Simulations on the turbulence time scale can be used to calculate turbulent
fluxes. Those can then be used in a macroscopic transport solver that
evolves the profiles.

2. A gyrokinetic simulation can be integrated directly to transport time
scales.

In either of these approaches, it is of interest to understand whether the an-
alytical formulation of the gyrokinetic system is complete enough to capture
the relevant physics. The answer is unclear a priori because practical imple-
mentations of gyrokinetics are inevitably approximate, involving truncations of
asymptotic expansions. As we will see, momentum fluxes can be very small in
some cases, raising the possibility that relevant terms may have been omitted
in many or all of the extant gyrokinetic codes.

This concern was first articulated clearly in the PhD dissertation of Parra
(2009) [see also the earlier paper of Parra & Catto (2008)], which was primarily
concerned with method 2 above, and has been developed in many subsequent
papers by Parra & Catto and Parra & Calvo (see Appendix L for some ex-
cerpts from the key papers). Those authors have argued strongly that current
gyrokinetic codes are inadequate for a complete treatment of momentum trans-
port on the transport time scale. (However, present codes could be used to
calculate momentum fluxes on the shorter turbulence time scale in the presence
of strong flows driven by beam injection.) Papers by Scott & Smirnov (2010)
and Idomura (2012) contain statements that have been interpreted by some as
counterarguments.3 The purpose of the present report is to provide background
for, and to describe the current state of this issue. In brief, we find that the
principal conclusion of Parra & Catto is correct regarding the need for higher-

3Both papers are excellent and contain interesting, important results; however, neither
goes far enough to disprove the specific points that Parra & Catto have made, as we will
demonstrate later. Further concerns have been expressed by B. Scott (private communication,
2013). But Parra & Calvo (private communication, 2013) have evidently calculated all of the
terms to the necessary order; they have concluded that it is not possible to prove that the new
higher-order terms do not contribute to momentum transport in general, and they speculate
that there is always some regime in which they will matter. The present authors have not
seen the details underlying either of the last two private communications.
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order terms for momentum transport, given the particular set of assumptions
they considered. Those are

1. low-flow ordering;

2. gyro-Bohm scaling;

3. toroidal axisymmetry;

4. up–down symmetry.

It is very important to stress that these assumptions are not relevant to all
possible physics regimes of interest or all possible machine designs. For example,
they may not hold near the plasma edge where eddy sizes are not very small
compared to gradients and gyro-Bohm scaling might not hold, or with large
shear flows such as may occur with beam injection or near transport barriers.
Therefore, extant codes (perhaps with some extensions) remain useful for studies
of a variety of important physical processes.

The problem can be boiled down to the following questions, which constitute
the charge of the Study Group:

[1] Are the gyrokinetic equations used in existing codes (including GTS,
GYRO, and GTC) adequate to simulate the evolution of turbulence over
transport time scales?

[2] Are second- and/or third-order corrections in the normalized Larmor
radius required for (a) the gyrokinetic equation; (b) the gyrokinetic
Maxwell equations?

[3] If the answer to [2] is positive, is the vorticity equation proposed by
Parra & Catto a possible fix to extend the validity of gyrokinetic codes
to long time scales?

[4] If second-order gyrokinetics is sufficient, what needs to be done to fully
implement this into codes with sufficient numerical accuracy, either
directly or through separate gyrokinetic transport equations for the
long time scale?

One can note that these questions do not, in fact, make direct reference to
the fundamental assumptions listed above. The questions are open-ended and
can be asked for various physics regimes. Answering them in all generality would
require nothing less than a discussion of the utility of gyrokinetic simulations
for all possible physical regimes of toroidal devices. Here, however, we shall
interpret the questions narrowly and address them only within the context of the
basic assumptions of toroidally axisymmetric devices with gyro-Bohm scaling
in the low-flow regime.

In fact, an even more fundamental issue underlies the discussion. We will
address questions 1–4 from the point of view of momentum conservation.4 Now

4For a more general approach, see Calvo & Parra (2012).
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momentum conservation laws can be formulated in the phase spaces of either
particles or gyrocenters, and the mathematical forms of those laws differ de-
pending on which is chosen. There has been some concern that although a
gyrocenter momentum conservation may exist, its physics content may differ
from the particle conservation law; if so, the gyrokinetic conservation law would
be irrelevant to the momentum transport of real particles. Thus, the most basic
question is

[0] Are the physics contents of the particle and the gyrocenter conserva-
tion laws equivalent or different?

We will argue that they are, in fact, equivalent. The important implication is
that manipulations can be done in either particle or gyrocenter phase space.
If they are done consistently, one will be led to identical physics conclusions,
although they will have different mathematical representations. As a simple
example, it is well known that while the diamagnetic velocity emerges from the
particle-based momentum equation, it is absent (explicitly) from the gyroki-
netic equation. However, both equations can correctly represent low-frequency
physics.

2.2 Momentum flux in the low-flow ordering

In the subsequent discussion, it is crucial to understand the size of the momen-
tum flux that is expected. We shall give two different but consistent arguments.

Unless otherwise indicated, by ‘flux’ we mean statistically averaged, time
averaged, or simply mean flux Π. This is the quantity that is measured ex-
perimentally and is the one that is relevant for macroscopic considerations of
confinement and rotation-related issues. In a turbulent system, there are also
random fluxes Π̃, e.g., momentum flows due to randomly directly E×B flows.
One has Π = 〈Π̃〉, where the angular brackets denote a flux-surface average as
well as a statistical ensemble average. It is important that such averages are
assumed to vary only on a macroscopic spatial scale L. (If necessary, we will
think of L as the minor radius a; however, generally we will not distinguish
between the macroscopic length scales, such as a or the major radius R, or
equilibrium scale lengths such as Ln

.
= |∇ ln〈n〉|−1.) Of course, knowledge of

the mean says nothing about the variance of the fluctuations. Typically the
probability density function (PDF) of those fluxes is broad.5 It is quite possible
for the ratio of mean to variance to be asymptotically small, and that is in fact
the scenario we shall describe.

2.2.1 Gyro-Bohm scaling and momentum flux

For turbulent transport (we will mention collisional transport in the next para-
graph), one can easily estimate6 the mean flux as follows. Consider a hypothet-

5B. Scott (private communication, 2013) has performed measurements of those PDFs in
simulations.

6One or another version of this estimate can be found in many of the papers of Parra &
Catto.
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ical local conservation law for the fluid momentum density (which is predomi-
nantly that of the ions) in a slab model:

mini
∂〈u〉(x, t)

∂t
= −∂Π

∂x
. (1)

Here mi is the ion mass, ni is the ion density, u is the toroidal velocity, and x is
a radial coordinate. For ordering purposes, we will assume that the mean flow
is diffusive:

− ∂Π

∂x
= D

∂2〈miniu〉
∂x2

. (2)

We do not mean to imply that 〈u〉 literally obeys a diffusion equation. Later
we will refer to pinch and residual-stress terms; the diffusion form is just an
artifice for establishing a basic scaling. Now the dimensions of Π (being a flux
of momentum) are [Π] = [(mnu)u]. Therefore, it is natural to normalize Π to
minic

2
s , where cs is the sound speed. Then

Π

minic2s
∼ L

c2s

∂〈u〉
∂t

∼
(
L

c2s

)(
D

L2

)
〈u〉 = D

Lcs

( 〈u〉
cs

)
. (3)

One can consider either a sonic (‘high-flow’) or a subsonic (‘low-flow’) ordering;
we follow Parra & Catto in concentrating here on the low-flow regime.7 By
definition, in the low-flow ordering one has 〈u〉/cs = O(ǫ), where ǫ is the basic
gyrokinetic expansion parameter ǫ

.
= ρs/L. [Here ρs is the sound radius: ρs

.
=

cs/ωci. The ordering makes 〈u〉 = O(V∗), where V∗ .
= ρscs/Ln = ǫcs is the

diamagnetic speed and Ln is the density scale length.] A general theory should
be able to handle the gyro-Bohm regime (which is what is expected in the small-
ρ∗ limit of local turbulence and is also what is found in neoclassical theory when

7Important physics regimes, such as might occur with strong beam injection or near the
edge or scrape-off layer, cannot be treated in the low-flow approximation. We study that
regime because it is the most difficult and the one treated in much of Parra’s work.

It is not yet clear how intrinsic rotation in tokamaks scales. One can show that the ensemble-
averaged intrinsic momentum flux vanishes in high-flow gyrokinetics in standard core regimes
(Parra et al., 2011b), so it is necessary to keep higher-order terms from the low-flow regime
in order to explain intrinsic rotation observations from a core turbulence mechanism. Some
proposed theories involve edge mechanisms that drive an intrinsic momentum flux to the wall
(deGrassie et al., 2009; Stoltzfus-Dueck, 2012), and some of those mechanisms might force the
core flows into a high-flow regime. Some empirical scalings (Rice et al., 2007) suggest that
intrinsic flows can be in a high-flow regime, while other studies of rotation data find that the
core–edge difference is consistent with low-flow gyro-Bohm theoretical scalings (Parra et al.,
2012). In particular, observations of a reversal in the toroidal flow in the tokamak core region
indicate the need to keep high-order terms from the low-flow regime (Parra et al., 2012).

When there is strong rotation from beam injection, it is clearer that one can focus on the
simpler high-flow regime in the plasma core. A thorough treatment of many aspects of the
high-flow regime has been given by Abel et al. (2013) [see also Sugama & Horton (1998)].
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ν/ωci ∼ ǫ), so we also assume gyro-Bohm transport scaling8:

DgB =
(ρs
L

)

︸ ︷︷ ︸
ǫ

DB, (4)

where the Bohm diffusion coefficient is defined to be

DB
.
=
cTe
eB

= ρscs. (5)

Then
Π

minic2s
∼
(ρs
L

)2

︸ ︷︷ ︸
ǫ2

( 〈u〉
cs

)

︸ ︷︷ ︸
ǫ

= O(ǫ3). (6)

Thus, for gyro-Bohm scaling in the low-flow ordering, the flux of linear momen-
tum density is O(ǫ3). That scaling also holds for the flux of angular momentum
density if it is normalized appropriately. Angular momentum contains an ex-
tra factor of the major radius R. Technically, this follows from the covariant
toroidal (ϕ) component (see Appendix A for a review of generalized coordinates)
of u:

uϕ
.
= u · eϕ = Ru · ϕ̂. (7)

Therefore, one has
Πϕ

minic2sR
= O(ǫ3). (8)

In the presence of collisions, this estimate is modified. Parra & Catto (2008)
showed that the collision-driven viscosity is O(ǫ2(ν/ωci)). For a typical maximal
ordering, one can take ν/ωci = O(ǫ); then both the collisional and turbulent
contributions are O(ǫ3).

The O(ǫ3) scaling is the key result that must be kept in mind during the
subsequent discussion. Athough it may not yet be obvious, one way of inter-
preting it is to say that the physics of an axisymmetric9 torus is intrinsically
ambipolar through second order (Parra & Catto, 2009c; Sugama et al., 2011;
Calvo & Parra, 2012, and references therein), so one must work to third or-
der to determine the long-wavelength (flux-surface-averaged) part of the radial
electric field (which is intimately related to toroidal rotation). This was already
known for neoclassical theory, and the discussion suggests that it holds for tur-
bulence as well. Here the result has been (heuristically) argued by looking just
at the rotation. However, Calvo & Parra (2012) have discussed the problem in
depth from the point of view of the complete gyrokinetic equation; the same con-
clusion is reached. We shall refer to that important paper again; it is essential
reading for a complete understanding of the subject.

8Gyro-Bohm scaling, corresponding to local, microturbulent transport, is the worst case.
In regimes where the transport scales more adversely than gyro-Bohm, i.e., D ∼ ǫnDB with
n < 1, then the highest, third-order terms may not be needed, though second-order terms still
will be.

9In the present discussion, the restriction to axisymmetry is hidden in the assumption of
gyro-Bohm scaling.
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2.2.2 Symmetry breaking and momentum flux

We now rederive the ǫ3 scaling from a different argument that makes strong
use of symmetry considerations. Consider the Reynolds stresses associated with
microturbulence. In a slab geometry, a standard contribution to momentum flux
is the Reynolds stress10 Π = (mn)i〈δVx δVy〉, where δV is the fluctuation in the
turbulentE×B velocity. For characteristic microturbulence that is saturated at
the mixing-length level, thoseE×B velocities are at the diamagnetic level V∗ =
ǫcs. Nominally, therefore, Π ≡ Π[2] = O(ǫ2). (Here the bracketed superscript
indicates the apparent order of the term.) However, in the absence of a preferred
direction, one expects that δVx and δVy should be uncorrelated, in which case
Π[2] would vanish.11

This argument fails in the presence of a sheared mean flow, which breaks the
symmetry of the microscopic turbulence. One expects that the resulting flux
should be proportional to the size of the symmetry-breaking effect:

Π ∼ ǫ2 × (size of the symmetry breaking). (9)

In the low-flow regime, one has by assumption that 〈u〉 = O(ǫ). Therefore, one
expects for symmetry breaking by a sheared mean flow that

Π ∼ ǫ2 × ǫ = ǫ3, (10)

which agrees with the estimate in Sec. 2.2.1. (This argument is amplified in
Appendix K.) Working backwards, we see that by invoking symmetry breaking
by a mean diamagnetic-level flow we have derived gyro-Bohm scaling rather
than assumed it from the outset.

In making this argument, it is crucial that the assumption of uncorrelated
E×B flows actually holds for flow-free turbulence. That has been argued by two
sets of authors: Sugama et al. (2011), and Parra et al. (2011b). They identify
transformations T that preserve the form of the local gyrokinetic equation (in
the absence of a mean flow or flow shear). That transformation includes invari-
ance under reflection through the midplane of the poloidal field configuration,
i.e., up–down symmetry. They then argue that since T〈δVx δVy〉 = −〈δVx δVy〉,
the correlation function must vanish.12 Again, that symmetry is broken by a
mean flow or mean flow shear.

10In toroidal coordinates, the proper (contravariant and covariant) components are Π =
(mn)i〈δV ψ δVϕ〉; see Eq. (54).

11This is a key observation to which we shall return multiple times in this report; see, for
example, Sec. 5.3. If it were the case that the basic Reynolds stress were in fact O(ǫ2), one
would not need to worry about possible contributions from higher-order terms.

12There is a subtlety that one might worry about, which is the possible breakdown of
the ergodic hypothesis that equates an ensemble average with an appropriate average of a
single realization over space and time. In principle, even if the ensemble average of the
flux-surface-averaged δVxδVy vanishes, it is conceivable that the equivalent space- and time-
averaged flux could have a large nonzero value that would violate the ordering assumptions.
Of course the instantaneous δVxδVy at a single space point in a particular realization will not
vanish in general and can be large. Sometimes it is assumed that the flux-surface average
alone eliminates large fluctuations and behaves like an ensemble average. However, that is
frequently not true in practice, so when processing numerical or experimental data one does
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This symmetry argument thus implies an ǫ3 scaling of a diffusive term (Π ∝
∂x〈u〉) and a pinch term (Π ∝ 〈u〉) in the momentum balance. It is important to
also consider residual stress, which by definition is not proportional to mean flow
at all. However, the estimate (9) is still expected to hold. Various mechanisms
may act. For example, Idomura (2012) has performed simulations in which the
symmetry breaking arises from shear in the background density and temperature
profiles, i.e., from the radial variation of the diamagnetic velocity V∗. (That
leads to radial shear in the poloidal phase velocities of ITG/drift waves.) In a
local gyro-Bohm limit, such effects vanish. If one includes them perturbatively,
they enter as a correction of the order of ρs/L∗, where L−1∗

.
= |∂r lnV∗|. If

one takes L∗ ∼ L, one finds that the symmetry breaking again scales with ǫ,
corresponding to momentum fluxes of O(ǫ3) or an intrinsic rotation of the order
of ǫcs. (See Appendix K for further discussion of a possible mechanism that
might give a stronger symmetry breaking.)

This is a scaling argument; it does not speak to the absolute size of the
effect. The distinction is important. For example, Idomura (2012) suggested
that because his simulation result Uϕ/vti ∼ 5% “is an order of magnitude larger
than” the low-flow gyro-Bohm estimate of Uϕ/vti ∼ ρ∗, the residual stress from
the lower-order terms is much larger than third order. However, the estimate
Uϕ/vti ∼ ρ∗ is only meant to indicate the scaling with ρ∗; there may be coeffi-
cients multiplying it (like qR/r) that may make the precise value significantly
larger. One would need to do a ρ∗ scan to determine the scaling (as Idomura
acknowledges), although that is numerically very expensive. (It might be that
this value of ρ∗L is not small enough to be deeply in the gyro-Bohm regime, so
it would not contradict the scaling estimates we have given.) Furthermore, if
one uses the more relevant local ρ∗L = ρ/LT ≈ 1

42 instead of ρ∗ = ρ/a ≈ 1
150 ,

then one finds that the simulation Uϕ/vti is actually about 2.1 ρ∗L, not very
big. Finally, although Idomura’s simulation methodology was formulated and
executed exquisitely carefully, his analysis of the effects of higher-order terms
was based on a limiting form of the third-order Hamiltonian H3 that, as he ac-

further space and time averaging, where the averages are over widths in radius and time that
are long compared to the turbulent decorrelation length and time but short compared to the
equilibrium space and time scales; this selects out just the components of the momentum flux
that contribute to the equilibrium-scale flow evolution. (Similarly, the particle and energy
fluxes may have large fluctuations at any radius and instant of time, but transport theory is
concerned with particle and energy fluxes that have been averaged over a radial width and
time period sufficiently wide that fast zonal fluctuations have been eliminated and one can
focus on the longer-time equilibrium profile evolution.) But while space-time averages and
ensemble averages are clearly distinct in principle, so could lead to different predictions, they
are equivalent under the ergodic hypothesis, and we are not aware of any demonstration that
this assumption is breaking down.

Another possibility is that the surface-averaged δVxδVy has a large positive or negative
value for an extended time, and only after very long time averaging does it average to zero.
In fact, there are observations (van Heijst & Clercx, 2009) in bounded 2D hydrodynamics
that the fluid randomly spins up in one direction or the other (this spin-up is related to the
inverse cascade in 2D), then occasionally flips direction spontaneously. We are not aware
of this occurring in the equilibrium-scale toroidal rotation in gyrokinetic simulations. While
one might worry about inverse cascades from the toroidal component of E × B, the normal
viscosity acting on the parallel flow probably prevents this.
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knowledged, is valid only in the long-wavelength limit (Mishchenko & Brizard,
2011). For that case, we show analytically in Sec. J.2.1 that the contributions
from H3 are expected to be small. Studies of cases with k⊥ρi ∼ 1 remain to be
done.

This concludes our introductory discussion of the basic scaling and symmetry
arguments. A more detailed analysis of the terms in the gyrokinetic momen-
tum balance is given in Appendix J; the results are consistent with the simple
estimates given above.

2.3 Momentum conservation and axisymmetry

Except for a few remarks in Sec. 6, we consider only axisymmetric toroidal
devices. By definition, that axisymmetry is with respect to the background
magnetic field arising from the external coils and equilibrium plasma currents.
The turbulent fluctuations need not be axisymmetric (that is, the toroidal mode
number n can be nonzero).

The virtue of the restriction to axisymmetry is that clean results about the
form of momentum conservation laws can be obtained from Noether symmetry
arguments (reviewed in Appendix H), and that was first done for the gyroki-
netic system in a seminal paper by Scott & Smirnov (2010). [Their results will
be discussed at length in Secs. 5.3 and Appendix J. A subsequent paper by
Brizard & Tronko (2011) gave a cleaner and more complete derivation.] But
that possibility also leads to a subsidiary concern: Even if a conservation law
for gyrokinetic toroidal angular momentum can be formulated, is it clear that
it is the ‘right’ one? Perhaps one obtains proper results only by working with
conservation laws for the actual particles, not the gyrocenters. Indeed, in the
course of the last several years, statements to that effect have sometimes been
made. Those assertions transcend the application to momentum conservation
and call into question the fundamental justifications of the gyrokinetic formal-
ism. Therefore, in Sec. 3 we briefly review the history and nature of gyrokinetics.
We will conclude that one can legitimately focus on the content of the gyroki-
netic conservation laws.

2.4 Global versus local, and full-F versus δF formulations

Gyrokinetic simulations can be formulated in terms of either global or local
(‘two-scale’) approaches. ‘Global’ means that the physics of (at least a fair
fraction of) the entire cross section is treated, including profile variations. ‘Lo-
cal’ means that just an thin annulus or flux tube is treated, assuming constant
profile gradients.

A distinction that is in principle independent of global vs local is between
a ‘full-F ’13 and a δF formulation. Full-F simply means that one solves the
gyrokinetic equation for the entire distribution function F . No assumption is
made about a Maxwellian or quasi-Maxwellian character of F ; its form follows

13In this report we use F for the gyrocenter distribution and f for the particle distribution.
The methods in question refer to solutions of the gyrokinetic equation, which evolves F .
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from the GK dynamics in the presence of imposed boundary conditions and
sources. The δF method is most precisely defined14 by writing the complete
gyrokinetic distribution function F as F = F0 + δF , where F0 is a known
distribution function. The method can serve as a way of focusing on just the
fluctuating components of the turbulence, since F0 does not vary significantly
on the turbulence time scale. [This was used in the Frieman–Chen gyrokinetics,
as is often done in Hasegawa–Mima and other fluid-plasma-turbulence studies,
and it can be employed in both continuum and particle-in-cell (PIC) codes.]
Specifically in PIC simulation, the application of numerical techniques to just δF
provides a way of reducing Monte Carlo sampling noise.15 Parra’s original
concern was with the accuracy of full-F approaches integrated to transport
time scales, and for most of the following discussion it is legitimate to assume
that we are speaking of full-F .

The original two-scale δF approach focuses on the asymptotic ρ∗ → 0 gyro-
Bohm limit. While that is an important limit to study, the modern full-F
approach relaxes this assumption and allows one to consider nonlocal effects
such as turbulence spreading and the transition between gyro-Bohm and Bohm
scaling at finite ρ∗, which may become important even in large devices near
transport barriers or the edge region. [Some later δF codes like GYRO or GENE
were formulated to have a global option to study some nonlocal effects, and a
more general nonlocal iterative derivation has been presented by Parra & Catto
(2008).] Full-F is the natural way of implementing a global simulation, espe-
cially in the presence of regions close to the edge where fluctuations are large
and there is no intrinsic separation between a background and fluctuating dis-
tribution function. However, it is clear that if no terms are dropped, equations
formulated in terms of δF carry exactly the same content as do those describing
full-F . Thus, it is in principle possible to perform a global simulation using a
δF method, as is done in several PIC codes as a noise-reduction method, and
as is done in some continuum codes like GYRO and GENE, which have options for
running in a nonlocal mode as well as a local mode. However, what is sometimes
meant by a δF method, even when run nonlocally, is one that solves only for
a time short compared to the transport time scale, so that the background F0

does not evolve much, in order to focus on calculating the turbulence spectrum.
Thus one can run a δF simulation on the turbulence time scale in order to
calculate fluxes, then use those fluxes in a transport solver in order to advance
the profiles on the longer transport time scale. Some further remarks about
δF formulations are given in Sec. 6.

2.5 Why has there been a controversy?

In advance of the detailed discussion to follow, let us assert that it is a firm result
that the mean momentum flux isO(ǫ3), given the stated assumptions. The forms
of the momentum conservation laws for both particles and gyrocenters are also

14The paper by Hu & Krommes (1994) contains both introductory and advanced discussion
of this point.

15For a review and further references, see Krommes (2007).
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unambiguous. Why then has the topic of higher-order terms in gyrokinetics
been so controversial, and why has it been so difficult to get everyone to agree?
There are a variety of reasons.

First, note that although some small terms are omitted from conventional
approximations, that does not mean that conventional codes cannot calculate
some fluxes of the required order; they do. Both Idomura (2012) and Scott
(private communication, 2013) have obtained mean momentum fluxes from sim-
ulations that include just first-order drifts and first-order polarization effects in
Poisson’s equation. (As discussed below, the latter effects are associated with a
second-order Hamiltonian H2.) The question is whether the omitted terms give
rise to fluxes that are comparable to those that are already calculated.16

Let us explain this further. Normally one would think that in any asymptotic
expansion the lowest-order nonvanishing terms should be sufficient. It is not too
hard to argue that one must keep effects related to the second-order Hamilto-
nian H2. The question is whether one also needs to consider the third-order
Hamiltonian H3; intuitively, most people dismissed that as being small and
negligible. Indeed, H3 itself is much smaller than H2. The problem is that, as
explained in Sec. 2.2.2, there are certain near-cancellations in an up–down sym-
metric tokamak (Sugama et al., 2011; Parra et al., 2011b; Peeters et al., 2011)
that occur in the low-flow regime when calculating the flux-surface-averaged
momentum flux (the perpendicular Reynolds-stress part of which is related to
H2 at lowest order); those make the resulting momentum flux smaller (by one
factor of ǫ) than one would at first expect. This is why it is possible for H3-
related effects to compete with and cause just as much momentum flux as those
associated with H2, even though H3 itself is O(ǫ) relative to H2.

Note that these cancellations can only occur in axisymmetric tokamaks (and
perhaps quasisymmetric stellarators). In general nonsymmetric devices, the
radial electric field will be determined by ambipolarity constraints at lower order
(Sugama et al., 2011); then it is not necessary to calculate H3. Indeed, one of
the complaints about the focus on higher-order terms has been that even if
small terms are important for the axisymmetric problem, realistic devices are
not perfectly axisymmetric. The worry is that if ripple or other asymmetries
are sufficiently large, the deviations from axisymmetry may dominate small
axisymmetric corrections. A priori, this is a legitimate concern, and further
research is called for to identify regimes where asymmetry may be important.
However, in practice the magnetic ripple δB/B in many tokamaks is very small
over most of the minor radius17 and can likely be neglected, although there

16In addition to his simulations, Scott (private communication, 2013) has performed analysis
that indicates to him that higher-order effects are negligible. We have seen some information
about his arguments, and we agree with certain particular points. However, as of the date of
the writing of this report we have not been able to obtain enough details for us to be able to
discuss them in depth or to change our general conclusions about the ordering issues that are
described in this report.

17For example, the relative magnetic field ripple δB/B at the edge of the Joint European
Torus (JET) is normally only 0.08% and drops rapidly by two orders of magnitude as one
moves towards the magnetic axis. However, JET experiments (Nave et al., 2010) find that if
the edge ripple is increased to 1.5% then it can have an effect on rotation that is comparable
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may be some regimes near the plasma edge where the situation may be more
complicated. Nevertheless, it remains useful to consider the consequences of
axisymmetry. The logic and form of the gyrokinetic formalism are subtle; if one
does not master them in a simple setting, there is no guarantee that errors will
not be made in other situations as well.

In the gyrokinetic formalism, physics embodied in the Hamiltonian shows
up in two places: through the drifts in the gyrokinetic equation, and in the form
of the polarization effect in the gyrokinetic Poisson equation (which determines
the electrostatic potential φ and thus the radial electric field Er). A point of
possible confusion is that it is not H itself that enters into the Poisson equation
but rather terms derived from H by functional differentiation with respect to φ.
(We remind the reader that we consider only electrostatic effects in this report.)
That differentiation reduces the order by one, so use of a third-order H implies
that for the electric polarization one must consider effects of no higher than
second order. Although H3 may be extremely small in practice and intuitively
may seem to be negligible, second-order effects are not so small. [Another
way of stating this point is that one must consider second-order terms in the
‘pullback’ transformation (Appendix D) that relates gyrocenter and particle
coordinates (Brizard, 2000). Most codes only implement first-order terms in
that transformation.]

The functional derivative δH/δφ also appears in the formal definition of the
perpendicular Reynolds stresses, as we will show later in detail. Because it
turns out that the derivative gets multiplied by another factor of O(ǫ) [see, for
example, Eq. (93b)], H3 can be shown to give rise to stresses that are nominally18

O(ǫ3). While that is very small, it is no smaller than the effects that arise from
the symmetry breaking of Π[2], and it is the order that is expected for momentum
fluxes in the gyro-Bohm regime, as indicated by the elementary arguments in
Sec. 2.2.1. This is the basic logic that argues for the necessity of considering
higher-order terms.

Yet another reason why it has been difficult to get everyone to agree is
that there are two very different approaches to deriving nonlinear gyrokinetic
equations. The more conventional original approach, initiated with the work
of Frieman & Chen (1982), used a two-scale δF asymptotic expansion of the
Vlasov equation, expanding the distribution function into large-scale equilibrium
and small-scale fluctuating components. The more recent full-F reformulation
uses Hamiltonian and/or Lagrangian methods and does not directly expand
the distribution function. These two approaches use very different terminology
and (superficially) different mathematical-physics techniques, and it is rare to
find someone who understands both approaches well. However, there are some

in magnitude to the normal intrinsic rotation. The edge ripple for ITER is 0.5% to 1.2%
(depending on the arrangement of ferritic inserts) and also drops rapidly towards the center, so
its effect near the edge probably needs to be considered along with other possible mechanisms
for intrinsic rotation.

18“Nominally of O(ǫ3)” means that the apparent size of the term is O(ǫ3), although it could
in principle be smaller, perhaps due to some unanticipated cancellation. In Sec. J.2.2 we note
that some such terms are indeed smaller, but also that no argument has yet been advanced
to prove that all contributions from H3 are smaller than O(ǫ3), and we doubt that is true.
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exceptions such as Parra and, earlier, Sugama, who wrote seminal papers using
both the two-scale expansion method [with a 1998 paper (Sugama & Horton,
1998) extending to the high-flow ordering and systematically deriving the next-
order gyrokinetic transport equations] and the Hamiltonian method [with a 2000
paper (Sugama, 2000) that introduced the very useful approach of Lagrangian
field theory]. It is often useful to have two independent approaches to a problem,
as they provide different insights and useful cross checks against each other.

The more conventional two-scale asymptotic expansion technique has its
roots in the linear gyrokinetics developed in the 1960’s and was used in the in-
vention of nonlinear gyrokinetics in the early 1980’s. The transition to a modern
formalism that involves a single ‘full-F ’ gyrocenter distribution function began
with the recursive derivation by Lee (1983) and the reformulation of Lee’s work
into a Hamiltonian representation of gyrokinetics by Dubin, Krommes, Ober-
man, & Lee (Dubin et al., 1983), which in turn was founded on earlier seminal
work by Littlejohn. It has been thoroughly developed since then by such peo-
ple as (in historical order) Hahm, Brizard, Qin, Sugama, and Scott. It uses a
very different, more geometrical language (e.g., symplectic forms) and method-
ology (e.g., Lie transforms and variational principles). Catto and then Parra &
Catto initially used the original two-scale expansion technique and furthermore
discussed some of their results in terms of the language of neoclassical theory,
where they have an extensive background. The technical language and body
of known results can differ significantly between various physics subspecialties,
so cross communication between the two approaches has been difficult. How-
ever, recently Parra and coworker Calvo have begun doing calculations with the
modern Lagrangian methods. That has helped to provide a common ground for
discussion.

In the end, however, the principle reason for past and, to some extent, con-
tinuing confusion is not differences in methodology. Rather, it is simply that
gyrokinetics is subtle, both physically and mathematically, and the problem of
momentum conservation is very difficult, involving the calculation and interpre-
tation of nonlinear terms through several orders. There is no reason to expect
that this should be trivial. Also, we should emphasize again that the original
controversy referred to a specific set of assumptions. If those are violated, the
conclusions must be revisited, although we do not attempt that here.

2.6 The utility of modern gyrokinetics

To repeat, it is useful to consider difficult problems in light of multiple ap-
proaches, and gyrokinetics is no exception. Certainly work based on the tradi-
tional two-scale approach to gyrokinetics has been very useful. That procedure
uses techniques that are more familiar to many physicists and provides a down-
to-earth way of looking at the physics that has led to many valuable insights,
including much of the pioneering work in gyrokinetics. However, ‘modern’ gy-
rokinetics (Lagrangian methods, noncanonical variables, Lie transforms, etc.)
can also be useful both conceptually and practically. The history of physics
contains numerous examples of the importance of concise reformulations, which
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are useful not only for enhancing physical understanding but also for ease of
technical manipulations. Indeed, the very notion of gyrokinetics represents a
radical change of point of view in which the particle is replaced by the gyrocenter
as a fundamental entity. Specifically with regard to the modern approach19:

• Whereas the kinetic equation of Frieman & Chen (1982) buries the po-
larization effect in an obscure way,20 the modern formulation brings it to
the fore in the gyrokinetic Poisson equation, enabling one to make explicit
connections to classical discussions of free and bound charge in electro-
magnetism. This is related to the specific meaning of a gyrocenter, which
is given a precise21 definition by the modern methods.

• The ability to use both noncanonical variables and Hamiltonian methods
simultaneously is a huge technical convenience. Coordinate-independent
formulations of Hamiltonian mechanics have been developed by such peo-
ple as Arnold (1978). Fundamentally, this is possible because Newtonian
mechanics (in its Hamiltonian formulation) preserves symplectic structure
(Appendix E).

• Although one can work out perturbation expansions using various method-
ologies and eventually get to the correct answer, Lie transformations pro-
vide the most succinct (and, in principle, nonperturbative) approach to
the choice of appropriate gyrocenter variables; their justification lies in
the theory of flows on phase space and in other results from differential
geometry, including the important concept of the Lie derivative (Sec. D.3).

• No matter what the approach, if the concept of gyrocenter is to be in-
troduced at all one must face up to the relation between the particle
distribution f and the gyrocenter distribution F . Although this can be
obtained and discussed in various ways and is a simple and straightforward
concept, in the mathematical language of modern differential geometry it
is represented elegantly and concisely by the pullback transformation T∗:
f = T∗F (Appendix D). The field of differential geometry provides a nat-
ural stage and the technical results useful to discuss pullbacks and other
tools used in modern gyrokinetics. Physically, the pullback22 gives precise
meaning to the concept of polarization charge (Sec. 3.1.3).

19Some prior background is required in order to appreciate all of the nuances of these
bulleted items. The material is developed later in the report, but is mentioned here in order
to set the stage.

20For more explanation, see footnote 30 on p. 30.
21Actually, the transformation between particle and gyrocenter phase-space coordinates is

not uniquely specified; some freedom exists that can be exploited for various purposes of
technical convenience. This can lead to some subtleties; see, for example, footnote 54 on
p. 56.

22Brizard (private communication, 2013) has stressed that polarization (and magnetization)
are actually more closely related to the pushforward transformation T∗. As used for the
practical manipulations in this report, the pushforward T∗ is related to the pullback T∗ by
T∗ = (T∗)−1. For discussion, see the last paragraph of footnote 64 on p. 76.
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• By preserving the Hamiltonian/Lagrangian structure of the dynamics and
making approximations only to the Hamiltonian or Lagrangian, one en-
sures that key conservation properties are maintained exactly at each order
in the expansion. This is not to imply that previous two-scale δF theories
did not satisfy the proper conservation laws in the appropriate limit. In
fact, they do, although one must go to next order in the expansion, namely
to the transport equations, to obtain a complete set of conservation laws
(Sugama & Horton, 1998; Abel et al., 2013). The Hamiltonian approaches
ensure that conservation laws hold for full-F global simulations as well.

While this report cannot be a self-contained primer on differential geometry and
related methods, we have provided a number of appendices that explain some
of the key ideas that are referred to in the body of the paper. We hope those
enhance the value of the report for newcomers to the field.

3 Review of gyrokinetic history and concepts

Gyrokinetics is built crucially on the adiabatic invariance of the magnetic mo-
ment µ. We do not discuss the history of adiabatic invariants here, but note an
important paper by Taylor (1967) in which he demonstrated the adiabatic invari-
ance of a modified magnetic moment even in the presence of a short-wavelength
electrostatic perturbation. Calculations of linear gyrokinetic physics were made
early on by such authors as Taylor & Hastie (1968) and Rutherford & Frieman
(1968). A transformative paper by Catto (1978) “avoids the substantial math-
ematical complications inherent in [those] prior treatments by introducing the
transformation to the guiding center variables and performing the guiding center
gyrophase average before specifying the magnetic coordinates to be employed”;
all methodology that we now know as gyrokinetics uses that approach. Non-
linear gyrokinetics dates from the early 1980’s, the seminal paper being that of
Frieman & Chen (1982). Thirty years later, the subject has evolved substan-
tially with the advent of such modern techniques as noncanonical variables, Lie
transforms, field-theoretic formulations, etc. In principle, none of those are nec-
essary in order to address the basic ordering issues related to momentum trans-
port, and their relative unfamiliarity may obscure rather than enlighten the sub-
ject; indeed, confusion has arisen because different groups have approached the
problem in different ways and used different language. Since one of the purposes
of this report is to describe the connections between the various methodologies,
it is necessary to briefly review the fundamental concepts that will be referred
to later. We do that in this section. Much, although not all, of the material
is elementary; some more advanced topics are discussed in the appendices. We
devote Sec. 4 to an exposition of momentum conservation in its various guises.
With the background of Secs. 3 and 4 in hand, we are then prepared to discuss
and answer in Sec. 5 the questions posed in the Charge. The reader interested
only in the answers to the Charge questions and our discussion of the current
state of affairs can skip Secs. 3 and 4 altogether and continue with Sec. 5 (p. 50).
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A number of review articles develop the subject of gyrokinetics from different
points of view. Garbet et al. (2010) focused on gyrokinetic simulations, whereas
the articles of Krommes (2010) and Krommes (2012) are both more theoretical
and aimed at audiences of non-plasma physicists. The technical methodology
that underlies modern gyrokinetics was reviewed in detail by Brizard & Hahm
(2007). Finally, many details of gyrokinetics as applied to rotating plasmas were
described by Abel et al. (2013).

3.1 Fundamental concepts

Some elementary treatments of gyrokinetics approach it from the point of view
of an average over one gyroperiod of a particle’s motion. That provides useful
intuition regarding the fact that a gyrocenter moves under the influence of an
effective or gyroaveraged electric field, but disguises other important features
of the formalism; because the charges and currents in Maxwell’s equations are
those of the real particles, gyrophase-dependent information is required in some
places, so one must consider the deviation from the average as well. Note that a
gyroperiod average is not well defined in general, as the projection of a particle’s
position onto a locally perpendicular plane does not close in the presence of mag-
netic inhomogeneity or electric fields. That suggests that most formalisms that
exploit the rapid gyration of a particle will be inherently perturbative, since the
averaging operation must be defined with respect to the lowest-order motion.
Indeed, modern gyrokinetics proceeds by implementing a variable transforma-
tion that is developed perturbatively (asymptotically). Of course, a mere change
of variables cannot change the physics content of the original Vlasov–Poisson
system. In order to focus on just the low-frequency fluctuations of interest, a
gyrokinetic closure must be made as well, analogous to the statistical closure
approximations familiar in turbulence theory (Krommes, 2002); we will discuss
it in Sec. 3.2.

3.1.1 The magnetic moment

A useful set of lowest-order variables is obtained from an action–angle transfor-
mation applied to circular motion. The lowest-order action is defined by23

J0
.
=

1

2π

∮
p · dq (11)

over one period of the lowest-order motion The canonical momentum for a
charged particle is (Goldstein, 1951)

p = mv +
q

c
A(x). (12)

23Here q is used as both a particle charge (scalar) and canonical coordinate (vector).

24



First consider the kinetic part:

J0,K =
1

2π
m

∮
v · dx (13a)

=
1

2π
m

∮
v2⊥ dt (13b)

=
1

2π
mv2⊥

(
2π

|ωc|

)
(13c)

= mv2⊥/|ωc|. (13d)

For the vector-potential part, write A(x) = A(X + ρ) ≈ A(X) + ρ ·∇A(X).
The lowest-order term vanishes after integration over the closed path. It is
easy to show that the first-order piece is − 1

2 of the kinetic part. Thus, the
lowest-order action is

J0
.
= J0,K + J0,A =

1

2
mv2⊥/|ωc|. (14)

This quantity is closely related to the magnetic moment µ′ associated with the
circulating current j = qδ(x− x̃)v, where x̃ describes circular motion involving

the gyroradius vector ρ
.
= b̂× v/ωc:

µ′ .=
1

2
c−1b̂ ·

∫
dxx× j =

1

2
c−1qρ× v = −1

2
qc−1v2⊥/ωc = −mv

2
⊥

2B
. (15)

The last result is charge-independent. Conventionally the minus sign is dropped
and one defines the (lowest-order) ‘magnetic moment’ as µ

.
= mv2⊥/2B. (Of

course, the sign matters when one is discussing the plasma magnetization.)
Technically it is often more convenient to use a quantity whose dimensions
(indicated by brackets) are literally those of an action, i.e., [action] = [energy]
/ [frequency], so an alternate definition is

µ
.
=

1

2
mv2⊥/|ωc|. (16)

This is, of course, just J0, but the notation µ seems to be more common. In this
report, we shall use the definition (16), but since we will be considering ions we
will drop the absolute value.

There is some ambiguity about whether ωc should be evaluated at the parti-
cle position x or the gyrocenter positionX. The previous derivation defines µ as
a property of the gyrocenter. However, in the systematic treatments it is often
simpler to begin with the particle variables, then to deduce the transformation
X ≈ x − ρ by proceeding through first order in ǫ

.
= ρ/L. Thus, the complete

set of lowest-order gyrocenter variables (sometimes called the guiding-center
variables) can be taken to be

z
.
= {x, U, µ, ζ}, (17)
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where U
.
= v · b̂ ≡ v‖, µ

.
= 1

2mv
2
⊥/ωc(x), and ζ is the gyrophase angle. ζ is

defined to increase for clockwise (ion) motion, so ζ = tan−1(−vy/vx); see Fig. 1.
The perpendicular velocity vector can be written in terms of a rotating unit
vector ĉ according to v⊥ = v⊥ĉ(ζ); then one defines â

.
= b̂ × ĉ such that

ρ = ρâ, where ρ
.
= v⊥/ωc.

â

e
2
^

e
1
^

xX

= ρρ â

ĉ

=
v

⊥
v

⊥
ĉ

����
����
����

����
����
���� −ζ

x

y

Figure 1: Illustration of the lowest-order gyrocenter coordinates. The magnetic field
is B = Bb̂; at the position x of the particle (black dot), B is in the z direction.

The particle velocity is U b̂ + v⊥ĉ; if B were constant, the particle would circle a
gyrocenter at position X

.
= x− ρ (green square) with angular velocity ζ̇ = ωc, where

the gyroradius vector is ρ
.
= b̂×v⊥/ωc = ρâ (ρ

.
= v⊥/ωc). Instead of resolving vectors

onto the orthonormal triad (â, b̂, ĉ), it is frequently convenient to use a local Cartesian

system (ê1, ê2, b̂) centered on the magnetic field line at the position of the particle.
The lowest-order magnetic moment is µ

.
= 1

2
mv2⊥/ωc, and the lowest-order gyrocenter

coordinates are {X , U, µ, ζ}. This figure was originally published as Fig. 1 of the
review article of Krommes (2012). Subsequently, it appeared on Sheldon’s whiteboard
in the January 31, 2013 episode of the TV series The Big Bang Theory entitled “The
Cooper/Kripke Inversion.”

By construction, µ is conserved for pure circular motion (which occurs only
for B = const and E = 0). More profoundly, general results from the theory
of adiabatic invariants suggest that a quantity µ

.
= µ + · · · will be conserved

through all orders24 if quantities seen by the gyrocenter change slowly in time.
It is convenient to use µ rather than µ as a variable because then µ will just

24“Conserved through all orders” does not mean that µ is conserved exactly. Resonances
between gyromotion and high harmonics of bounce motion (related to the second adiabatic in-
variant) can destroy µ conservation, as discussed in some detail by Dubin & Krommes (1982).
Mathematically, the issue is closely related to the fact that the asymptotic expansion of the
nonzero function exp(−1/ǫ) vanishes.
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appear as a parameter in the gyrocenter distribution function F ; in the kinetic
equation for F , no derivative with respect to µ will appear. A basic part of the
gyrokinetic program is thus to construct the transformation z = Tz such that
µ = Tµ is one of the new variables.25 That is conventionally done in terms of Lie
transforms, discussed in the next section. A simple example of the construction
of µ is given in Appendix F.

As indicated in Fig. 1, the particle motion is usually resolved onto a set of
local orthonormal unit vectors ê1, ê2, and b̂. Concern has been raised that in
some magnetic field configurations ê1 and ê2 may not exist (Sugiyama, 2008),
which calls into question the asymptotic construction of µ and the proof of
its adiabatic invariance. The issue was formally discussed in a published ex-
change between Krommes (2009) and Sugiyama (2009), but a consensus was
not reached. However, Burby & Qin (2012) have recently given an authori-
tative and solid mathematical analysis that has laid the matter to rest. The
conclusion is that the unit vectors always exist in a torus. In some other configu-
rations they may not exist (although for reasons different than those considered
by Sugiyama); however, the proof of asymptotic adiabatic invariance remains
intact.

3.1.2 Lie transforms

Newton’s laws of motion derive from a Hamiltonian, and that fundamentally
geometric property (Arnold, 1978) is not lost under the gyrokinetic change of
variables. Thus not only does one derive a new set of variables z, one derives a
gyrocenter Hamiltonian from which the collisionless gyrocenter equations of mo-
tion can be obtained from standard Poisson-bracket relations (see Appendix E).
Those equations of motion are encapsulated in the gyrokinetic equation for the
gyrocenter distribution F (z).

In traditional Hamiltonian theory, changes of variables are canonical (i.e.,
the Poisson brackets between the coordinates qi and momenta pj obey {qi, pj} =
δij) and determined by various kinds of mixed-variable generating functions.
However, the use of those functions becomes highly awkward already at second
order in perturbation theory because of the need to untangle the implicit def-
initions of the new variables in terms of the old ones. Modern theory employs
two major technical advances: (i) one need not work with canonical variables
(see Appendix E); (ii) Lie transformations provide explicit formulas for the new
variables in terms of the old ones. Because the Lie transformation can be writ-
ten in a covariant fashion, it can be applied to both canonical and noncanonical
variables.

Essentially, Lie transforms do for perturbation theory what propagators do
for temporal evolution. The solution of the nonlinear system of ODEs ẋ =
V (x, t) can be represented as xi(t) = U(x, t)xi; the nonlinear operator U(x, t) ≡

25As a side note, it is in principle possible to represent all of the gyrocenter physics in
terms of the lowest-order variables z instead of z. One reason that is not usually desirable
is that then the gyrokinetic equation would contain a ∂µ term since the lowest-order µ is not
conserved.
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U(t) propagates the initial conditions forward to their final value. Analogously,
Lie transforms propagate variables in a perturbation parameter ǫ, which replaces
time t. Proceeding analogously to the construction of U(t), one finds that the
basic Lie transformation operator is T(ǫ) = exp[w(ǫ)]. Here w(ǫ) is a vector
field (a differential operator; see Sec. A.6): w

.
= wν∂ν . In perturbation theory,

w could be expanded in powers of ǫ. More commonly, however, a procedure
advocated by Dragt & Finn (1976) is followed, wherein T is constructed as the
compound transformation

T = . . . eL3eL2eL1 , (18)

where Ln ≡ ǫnwn. The wn are determined order by order in such a way that µ
is conserved.

It must be clearly understood that µ conservation is a physical property of
the particle motion, not of any particular mathematical representation. Thus,
although the gyrokinetic equation is particularly clean in that no ∂µ appears, the
consequences of µ conservation permeate representations of the physics in terms
of particle variables as well, including the real-space momentum conservation
law.

3.1.3 Polarization

For purely circular motion, gyrocenters move only in the parallel direction. More
generally, they also drift slowly across the magnetic field with the effective elec-
tric and magnetic drifts. The formalism will focus on the gyrocenters as the
basic entities. From the point of view of macroscopic electrodynamics, gyrocen-
ters therefore behave as free charge, and the average deviation of the gyrating
particles from the gyrocenters can be considered to be bound charge (bound to
the gyrocenters). It is therefore useful to replace Poisson’s original equation
∇ · E = 4πρ with the macroscopic equation ∇ · D = 4πρfree ≡ 4πρG, where
D = E + 4πP and ∇ · P = −ρbound ≡ −ρpol. Here pol stands for polariza-
tion. This notation is used because the bound charge can polarize (slightly move
away from the gyrocenter) under various effects, such as in response to a slowly
time-varying electric field. Under the assumption of quasineutrality, which will
be justified in the next paragraph, Poisson’s equation therefore reduces to a
balance between the free gyrocenter charge and the polarization charge due to
the gyrating particles: 0 ≈ ρG + ρpol. Because the electron gyroradius is very
small, the polarization effect is negligible for electrons and is due entirely to the
ions.

Many of the difficulties and conceptual issues associated with modern gy-
rokinetics are associated with the proper calculation (and approximation) of ion
polarization through several orders in ǫ. However, it is easy to hand-wave the
lowest-order effect. Take as given the result that in slowly varying fields the
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polarization or inertial drift of an ion fluid is26

upol =
1

ωci

∂

∂t

( c
B
E⊥

)
. (19)

That drift leads to a polarization charge density ρpol according to the continuity
equation ∂tρ

pol+∇ · (upolρpol) = 0. Upon linearizing this around a background
state with no field and removing the partial time derivatives that appear in both
terms, one finds that

ρpoli = ∇ ·
(

1

4π
χ⊥∇⊥φ

)
. (20)

Here χ⊥ is the perpendicular dielectric permittivity27

χ⊥
.
=

ρ2s
λ2De

=
ω2
pi

ω2
ci

. (21)

Many plasmas have χ⊥ ≫ 1,which leads to some very useful properties
(Krommes et al., 1986). When that is satisfied,28 one has 4π∇ ·P ≫ ∇ ·E, i.e.,
D ≈ 4πP, or−ρpol ≈ ρG; this is the quasineutrality approximation ρG+ρpol ≈ 0
that will be used in the remainder of the discussion.29

26For a single particle, this follows from a simple iteration of Newton’s second law of motion;
nonlinear corrections are omitted here. [Some early discussions of polarization drift are given
by Spitzer (1962) and Chandrasekhar (1960).] For a statistical distribution of ions, this is
correct only in the cold-ion limit Ti → 0, i.e., in the absence of finite-Larmor-radius (FLR)
effects.

27Yet another way of writing the permittivity is χ⊥ = c2/c2A, where cA
.
= [B2/4π(nm)i]

1/2

is the Alfvén speed. However, since we only discuss electrostatics in this report, we will have
no need to introduce the Alfvén speed.

28Most fusion and many other plasmas satisfy χ⊥ ≫ 1 (a typical value is χ⊥ ∼ 103), so
quasineutrality is usually a good approximation on scales large compared to the tiny Debye
length. However, since the non-quasineutral corrections to the quasineutrality equation are
of order χ−1

⊥ ∼ 10−3, if one were to try to calculate momentum transport in the low-flow,
gyro-Bohm regime using the standard approach, which requires keeping corrections to the
dominant polarization that are of a factor of ǫ ∼ ρ/L smaller, then one might need to relax
the quasineutrality assumption as well, unless ǫ is significantly larger than χ−1

⊥ .
29A frequently voiced paradox relating to the quasineutrality condition raises the question,

“If the particle charge density ρ vanishes, doesn’t one conclude from Poisson’s equation that
there can be no electric field?” The answer is no, as can be seen from consideration of the
simple equation

ǫx = 1− x, (22)

where ǫ is small. The solution is x ≈ 1. However, from that approximate solution, which
annihilates the right-hand side of Eq. (22), one cannot conclude that the resulting statement
ǫx ≈ 0 leads to x = 0. From ǫx ≈ 0, which is an approximation, not an equality, one can
conclude only that x is the indeterminate ratio of two small terms, so it is not a useful way of
solving for x. In plasma physics, x is analogous to the potential φ, which frequently appears
as one piece of the charge density (for example, when electrons have approximately adiabatic
response). Thus, when ∇2φ is small the potential is dominantly determined by setting the
right-hand side of Poisson’s equation to zero. Corrections to that solution can be determined
by iteration. In gyrokinetics, the ǫ used in this footnote is not the gyrokinetic expansion
parameter, but rather χ−1

⊥ , reflecting the dominance of ion polarization.
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3.2 Derivation of the gyrokinetic–Poisson system

The early works on gyrokinetics, including the nonlinear gyrokinetic equation
of Frieman & Chen (1982),30 represented polarization in an awkward form that
disguised the significance of the gyrocenters and the interpretation in terms of
free and bound charge; as observed by Frieman & Chen, polarization was “con-
tained, not very obviously, within the finite Larmor radius corrections in [the
Bessel function] J0. . . .” Here J0 ≡ J0(k⊥v⊥/ωc); it represents the reduction of
the effective potential felt by the gyrocenter due to gyroaveraging of the motion
of a particle with nonzero gyroradius. The appearance of J0 in connection with
a discussion of polarization is confusing because polarization is fundamentally
not a finite-Larmor-radius effect. Expressions (19), (20), and (21) do not in-
volve the ion temperature; they remain nonzero for cold ions, for which J0,i = 1.
Basic polarization is extracted from the Frieman–Chen formulation as a limiting

30 The kinetic equation used by Frieman & Chen, as well as many subsequent authors, is
written not in terms of the gyrocenter PDF but rather for the quantity h in the decomposition
of the fluctuating Vlasov distribution

δfs = −
qsδφ

Ts
F0s + hs, (23)

where F0 is the background distribution and hs has no dependence on gyroangle. That is,
h represents the non-Boltzmann response. The derivation of the equation for h is described
in great detail by Abel et al. (2013). They discuss (p. 71) how the h equation contains
polarization as follows:

“Unfortunately, due to our choice of decomposition . . . for δfs, [polarization] is
not apparent from [the quasineutrality condition

∑

s

Z2
s e

2nsδφ

Ts
=

∑

s

Zse

∫
d3w 〈hs〉r . (24)

Here r and w are the particle position and velocity, respectively.] If, instead of
using hs, we work with gs = 〈δfs〉R = hs − ZseF0s〈δϕ〉R/Ts [Lee (1983); R is
the gyrocenter position], then the quasineutrality condition becomes

∑

s

Z2
s e

2ns(1 − Γ0s)δφ

Ts
=

∑

s

Zse

∫
d3w 〈gs〉r , (25)

where Γ0s is an operator defined by Γ0sδφ = (1/ns)
∫
d3w 〈 〈δφ〉R〉rF0s. In

this formulation, the left-hand side of this equation is precisely the density of
polarization charge (i.e. that density which accumulates because ∇ · Vpol 6= 0).
Indeed, if k⊥ρi is small, then [for Γe = 1 and Γi ≡ Γ] 1− Γ0 ≈ (1/2)ρ2i∇

2
⊥ and

this correspondence becomes obvious (the quasineutrality condition now looks
like Poisson’s equation for δφ, with an enhanced permittivity).

“The difference between the two formulations [in terms of either h or the gyro-
center distribution F ] is purely interpretative; we interpret [the h equation] and
the field equations as describing the dynamics of physically extended rings of
charge moving in a vacuum, whereas the approach emphasising the polarisation
drift interprets gyrokinetics as describing a gas of point-particle-like gyrocenters
(with distribution function gs) in a polarisable vacuum, with the above form of
the quasineutrality condition playing the role of Poisson’s equation. For more
discussion of this second interpretation see [Krommes (2012)] and references
therein.”
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procedure in which the smallness of the FLR corrections to J0,i ≈ 1 is cancelled
by dividing by small ion temperature in the limit as Ti → 0. (Of course, there
are true FLR corrections to that basic limit.) The formalism of Frieman & Chen
focuses on rings of particle charge, not gyrocenters, as discussed in more detail
in footnote 30 on p. 30.

An important advance was made by Lee (1983), who produced a gyrokinetic
equation in a more conventional form. He was initially motivated by practical
considerations relating to the goal of formulating a particle-in-cell gyrokinetic
simulation scheme. To that end, he needed a kinetic equation in characteristic
form, and he also required an efficient way of calculating the potential under
the quasineutrality constraint. If that constraint is written in terms of the
particle charge density ρ, the equation ρ = 0 defines the potential φ implicitly
and is difficult to handle numerically. But if the polarization charge density is
split off and balanced with the gyrocenter charge density, one obtains a Poisson
equation for φ that is much easier to solve. Practical considerations aside, Lee’s
formulation amounts (as was only fully appreciated later) to a shift in focus
to the dynamics of a gyrocenter, so it yields to the interpretation in terms of
free and bound charge given above — a powerful argument in its favor. By
displaying the polarization effect explicitly in Poisson’s equation as he did, it
becomes clear how it survives in the cold-ion limit in which all FLR effects
are neglected and all J0’s approach 1. Although there may be certain technical
advantages to the Frieman–Chen form of the gyrokinetic equation, and it is used
in various extant codes, the physics of the situation is best brought out by the
gyrocenter representation. Furthermore, the gyrocenter interpretation emerges
naturally from the modern Hamiltonian formalism, as is described below.

Dubin et al. (1983) reconsidered Lee’s (collisionless) work from the point
of view of Hamiltonian dynamics. They used noncanonical variables and Lie
transforms, and they worked with an extended (8D) phase space. In order to
focus on the self-consistent determination of the potential φ, they considered
an electrostatic slab model with constant magnetic field. Let F̃ (X, U, µ, ζ, t)
be the gyrocenter distribution function; the tilde denotes dependence on the
gyrophase angle ζ.31 Dubin et al. found the kinetic equation32

∂F̃

∂t
+ U b̂ ·∇F̃ + V E [ψ] ·∇F̃ +

q

m
E‖[ψ]

∂F̃

∂U
− ωc

∂F̃

∂ζ
= 0. (26)

Here E[φ]
.
= −∇φ and E[φ] ≡ E[φ], φ denoting the gyroaveraged potential.

The quantity ψ is the effective potential (the gyrocenter Hamiltonian divided
by charge q), which Dubin et al. calculated through second order.

One must take care with the gyrokinetic Poisson equation. Poisson’s equa-
tion is written in terms of the particle PDF f , but the GKE evolves the different

31In our previous discussion we merely wrote F for the quantity here called F̃ . Here we
need to be more precise.

32The gyrokinetic equation including gyrophase dependence is not written in this specific
form in the Dubin paper, but cf. the unnumbered equation between their Eqs. (16) and (17).
Regarding unnumbered equations, see Mermin (1990, p. 69, Rule 1).
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quantity F̃ . As discussed in Appendix D, the necessary change of variables that
relates the particle and gyrocenter PDFs is represented succinctly as33 f = T∗F̃ ,
where T∗ (an operator induced34 from T) is called the pullback transformation.35

One then finds that the particle charge density is36

ρ(x, t) =
∑

s

(nq)s

∫
J dz δ(x−X)T∗F̃ (z, t). (27)

Here J is the Jacobian ∂(x)/∂(z). The delta function was inserted in order that
a complete integration could be performed over all six phase-space variables.

It is important to appreciate that x is a dummy variable in this equation.
Equation (27) determines the charge density (and thus the potential) at any
point in physical space. Therefore, there is no conceptual difficulty in using a
gyrokinetic simulation to determine a laboratory-coordinate-system-based elec-
tric field.

Equation (27) is not yet the usual gyrokinetic Poisson equation because it

involves the gyrophase-dependent PDF F̃
.
= F +∆F , where F does not depend

on gyrophase but ∆F does. Indeed, if all one does is introduces a change of
variables in the kinetic equation (z = Tz, where for the present discussion we
allow for the possibility that T includes effects beyond all orders in the gyroki-
netic expansion parameter ǫ) and represents Poisson’s equation using f = T∗F̃ ,
no physics has been lost ; the formalism still contains high-frequency physics
and uses a 6D kinetic equation. In order to obtain a reduced formalism that is
efficient for fluctuations with ω ≪ ωci, a gyrokinetic closure37 must be made.

33There are notational difficulties with the formula f = T∗F̃ . The Vlasov distribution
function is typically written as f(x, v, t). To proceed with the transformation theory, one
needs to write f in terms of lowest-order gyrocenter variables z. In terms of those variables, the
distribution has a different functional form, so one needs a new symbol. It would make some
sense to write f(x, v, t) = F (z) (the particle PDF expressed in a different set of variables),
then to transform to F (z); however, F is used in different ways by different authors, and
uppercase may imply a gyrocenter PDF, so use of that symbol may be confusing. Therefore,
we will just use f to stand generically for the particle PDF; it should be clear from the context
on which variables that depends.

34If T = exp(w), where w is a vector field, then T∗ = exp(Lw), where Lw is the Lie
derivative (Sec. D.3) in the direction of w.

35We hope that the reader is not intimidated by this technical term. We use the notation T∗

and the word pullback merely as a shorthand that indicates that the particle distribution f and
the gyrocenter distribution F̃ have different functional forms; they express the same physics,
but in different variables.

36In the work of Dubin et al. and in other places, the delta function that appears in Eq. (27)
is instead written as δ(x − X − ρ) because a preliminary transformation to lowest-order
gyrocenter variables was made (following early work of Littlejohn). Brizard (1990) has shown
that the preliminary transformation is unnecessary; it can be obtained as part of the Lie
transformation T. It is formally easier to carry all of the gyroradius corrections in T, so we
shall not make the preliminary transformation.

37The phrase ‘gyrokinetic closure’ is used here in the same sense as ‘statistical closure’ is
used in turbulence theory. In the latter (Krommes, 2002, and references therein), ensemble
averages are used to reduce the enormous amount of information contained in the primitive
amplitude equation; the price one pays is that an approximation must be made in order to
close the theory in terms of a finite number of moments. Gyrokinetics is analogous, with
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That means, first, constructing T through only a few orders in ǫ and expand-
ing out resonance functions of the form (ω − nωci)

−1 (|n| ≥ 1) by treating ω
as small; and second, reducing the 6D phyics to 5D. That is easily possible
by integrating the kinetic equation over gyrophase because T is constructed to
make the characteristic velocities and accelerations independent of gyrophase;
thus one arrives at a conventional gyrokinetic equation for the reduced, 5D

distribution F
.
=
∫ 2π

0
dζ F̃ . However, one must still face up to the presence

of the gyrophase-dependent quantity ∆F in Poisson’s equation. Traditionally
∆F has been dropped altogether. (This does not mean that all information
about particle gyration is ignored; one still has gyroaveraged electric fields,
and the differences between particle and gyrocenter positions show up as the
polarization effect in Poisson’s equation.) In collisionless theory, that can be jus-
tified by noting that one can find gyrophase-independent solutions of the kinetic
equation (Dubin et al., 1983). This is not possible in the presence of collisions.
Brizard (2004) pointed out that collisions drive a gyrophase-dependent correc-
tion ∆F = O(ν/ωci)δF , where δF is the deviation from a Maxwellian distribu-
tion [of course, this is born out by the collisional calculations of Parra & Catto
(2008)]. Given the other assumptions already made in obtaining low-frequency
gyrokinetics, this correction may be calculated perturbatively. Dropping it al-
together is consistent when only first-order polarization terms are retained (see
later discussion), but one may need to retain it when higher-order effects are
of concern.38 Indeed, the desire to develop a unified theory that includes both
collisional and turbulence effects on equal footing was a key motivation for the
work of Parra & Catto (2008) and Catto et al. (2008). For now, we follow the
collisionless calculation of Dubin et al. (1983) by dropping ∆F and thus writing
the gyrokinetic Poisson equation as

ρ(x, t) =
∑

s

(nq)s

∫
J dz δ(x−X)T∗F (z, t). (28)

We now have a closed gyrokinetic–Poisson system that determines F and the
potential φ.

One can proceed from Eq. (28) to develop a formally exact expression for the
polarization; this will be useful in later manipulations that lead to the gyrocenter
momentum conservation law (see Sec. I.2). Following Brizard, we write Eq. (28)

gyrophase average replacing ensemble average and the goal of closure being a closed system
that determines the gyrocenter PDF F . In turbulence theory, closures sometimes have negative
connotations because in situations of strong turbulence they can entail errors of order unity
and/or be qualitatively wrong. However, in situations involving small autocorrelation time
statistical closures can become asymptotically exact, and that situation is more analogous to
gyrokinetics, which exploits an asymptotic expansion in ǫ.

38In other words, while the lowest-order collisional effects have been included in gyroki-
netics in various ways [see, for example, Dimits & Cohen (1994), Sugama & Horton (1998),
Abel et al. (2013), Li & Ernst (2011), and references therein], if one pursues momentum trans-
port in the low-flow gyro-Bohm regime by including second-order terms in the polarization,
then one may also need to keep higher-order collisional corrections related to the gyrophase
dependence of F .
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as

ρ(x, t) =
∑

s

(nq)s

∫
J dz [(T∗)−1δ(x−X)]F (z, t). (29a)

=
∑

s

(nq)s

∫
dxJ δ(x−X − ρǫ)F , (29b)

where39 ρǫ
.
= (T∗)−1X −X. The delta function can be expanded in small ρǫ:

δ(x−X − ρǫ) = δ(x−X)

−∇ · [ρǫδ(x−X)] +
1

2
∇∇ : [ρǫ ρǫδ(x−X)] + · · · . (30)

The zeroth-order term gives rise to the gyrocenter charge density

ρG
.
=
∑

s

(nq)s

∫
dpF (31)

(the Jacobian is subsumed in the formal dp momentum integration), and the
remaining terms can be interpreted as −∇ ·P, where the polarization vector is

P
.
=
∑

s

(nq)s

∫
dp 〈ρǫ〉F − 1

2
∇ ·

(
∑

s

(nq)s

∫
dp 〈ρǫ ρǫ〉F

)
+ · · · . (32)

(Here the angle brackets denote an average over gyrophase ζ; that is legitimate
because no other quantities depend on ζ after the gyrokinetic closure has been
made.)

Note that some of these correction terms are present even in the absence
of an electric field. The familiar polarization (20) vanishes with the potential.
That agrees with the common intuition that macroscopic polarization exists
only in the presence of an electric field. However, to the extent that there are
pressure-related or other contributions to polarization that persist even in the
absence of potential, that intuition must be incomplete. Since generations of
plasma physicists have learned the physics of polarization from Jackson’s well-
known treatise on electrodynamics, it is worth quoting from his discussion; we
will find that he actually covered the general situation! Quoting specifically
from Jackson’s first edition (Jackson, 1962, p. 108),

In the absence of external fields, atoms or molecules may or may not
have electric dipole moments, but if they do, the moments are randomly
oriented. In the presence of a field, the atoms become polarized (or their
permanent moments tend to align with the field) and possess on the
average a dipole moment. These dipole moments can contribute to the
averaged charge density. . . In the absence of a field there is no average
polarization.a

aExcept for electrets, which have a permanent electric polarization.

39Here the pushforward operator (T∗)−1 is understood to act on the Cartesian components
of X. For further discussion of this point, see the last paragraph of footnote 64 on p. 76.
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(italics added). Note his crucial footnote,40 which allows that some materials
known as electrets (see Wikipedia:Electret) can have a permanent polarization.
In this sense, the magnetized plasma at nonzero temperature is an electret.

3.3 Symplectic dynamics and the 1-form method

The methodology used by Dubin et al. (1983) relied on Darboux’s theorem41

to justify and implement the construction of semi-canonical variables; in par-
ticular, the magnetic moment µ and the gyrophase ζ were constructed to be
canonically conjugate. That method did not fully exploit the symplectic nature
of the dynamics or the technical simplifications that follow from the method
of differential forms. As explained by Littlejohn (1983) and Cary & Littlejohn
(1983), it is most natural to represent the dynamics in terms of the fundamental
Poincaré–Cartan (differential) 1-form (for background information on differen-
tial forms, see Appendix C) γ

.
= p · dq − H dt, in terms of which Hamilton’s

variational principle is written as δ
∫
γ = 0. Because the value of the particle

action is indifferent to the particular variables used in its evaluation, γ may be
written in terms of any variables whatsoever; then the equations of motion for
the new variables follow as the new Euler–Lagrange equations.

There are several ways of representing this theory covariantly. First let us
follow Cary & Littlejohn (1983) and arrange the phase-space coordinates for a
single particle according to

zi
.
= {q1, q2, q3, p1, p2, p3} (i = 1, . . . , 6), (33)

then introduce the extended phase-space coordinates42

zµ = {t, zi} (µ = 0, . . . , 6). (34)

Then the (covariant) coordinates of the canonical 1-form are

γµ = {−H, p1, p2, p3, 0, 0, 0} (35)

and one has the manifestly covariant form

γ = γµdz
µ. (36)

It is shown in Appendix C that the Euler–Lagrange equations are

ωµν
dzν

dλ
= 0, (37)

40This footnote seems to have vanished from subsequent editions.
41Darboux’s theorem (in symplectic geometry) states very loosely that in a local region of

a symplectic manifold (Appendix E) one can construct a change of variables that brings the
symplectic form ω to its canonical form. Dubin et al. followed Littlejohn (1979) in finding a
semi-canonical form involving the term µdζ.

42Phase-space coordinates are superscripted (contravariant); the coordinates of forms are
subscripted (covariant). See Appendix A.
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where λ parametrizes the trajectories (λ could be the time t) and

ωµν
.
= ∂µγν − ∂νγµ. (38)

The ωµν are the coefficients of the differential 2-form ω
.
= dγ (see Sec. C.3).

Another, yet more elegant way of proceeding is to work in an 8D ex-
tended phase space possessing space-time coordinates {t, x1, x2, x3} and mo-
menta {H, p1, p2, p3}. Trajectories are then parametrized by an auxiliary time-
like parameter τ (which from the extended equations of motion turns out to be
just the time t). That is the approach used in Brizard’s variational formulation
(see Appendix G).

3.4 Gyrokinetic field theory

To the extent that one formulates the gyrokinetic–Poisson (or Maxwell) system
in terms of some truncation of the pullback transformation, one is faced with the
fundamental uncertainty of how to ensure that the truncations are consistent
between the gyrokinetic equation and the Poisson equation. ‘Consistent’ means
that one should be able to demonstrate exact conservation laws for the truncated
system. Although one may be able to find such laws by experimentation [for sev-
eral important examples, see Dubin et al. (1983)], the trial-and-error approach
is fundamentally unsatisfactory. A major advance was achieved when Sugama
(2000) and Brizard (2000) formulated gyrokinetics as a Lagrangian field the-
ory. In this method, both the collisionless gyrokinetic equation and a consistent
set of gyrokinetic Maxwell equations are obtained by appropriate variational
derivatives of a gyrokinetic action functional A[F , ϕ] (not to be confused with
the single-particle action). Provided that approximations are made only on A,
one can use powerful Noether methods (reviewed in Appendix H) to both prove
that exact conservation laws exist in the presence of particular symmetries and
simply obtain the form of those conservation laws. For present purposes, the
two most important examples are conservation of energy (for a time-stationary
background) and conservation of toroidal angular momentum (for a background
state that is independent of toroidal angle ϕ). We will be particularly concerned
with the latter law, which was first derived by Scott & Smirnov (2010) and is
discussed in detail in Sec. 5.3 and Appendixes I and J. Scott has argued strongly
that modern gyrokinetics should be defined by its representation as a field the-
ory.

An important criticism of the variational approach is that it naturally
generates collisionless gyrokinetics; a way of embedding collisional effects di-
rectly into the action is not necessarily apparent. There has been some lim-
ited progress on methodologies that include dissipation: Kaufman (1984) and
Morrison (1984) have discussed dissipative brackets, various kinds of statistical
closures (Krommes, 2002) can be used to relate dissipation-free and dissipative
systems, and Burby et al. (2013) have recently made progress on the closely
related topic of Hamiltonian Langevin equations. It is by no means excluded
that collisional and turbulence effects can be ultimately unified by means of a
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dissipative variational formalism. However, that is an advanced topic that we
do not pursue further here; it is not ready for prime time.

4 Form and interpretation of the gyrokinetic mo-

mentum conservation law

In this section, we discuss various representations of the conservation law for
toroidal angular momentum, both for particles (Sec. 4.1) and for gyrocenters
(Sec. 4.2). We give a derivation of the gyrocenter conservation law for a simpli-
fied situation. Then we sketch the derivation of the complete conservation law
and present its final form. Armed with this background (which can be skipped
on a first reading), we address in Sec. 5 the questions posed in the charge to the
study group.

Because of axisymmetry, one focuses on the conservation law for toroidal an-
gular momentum. Within the context of low-frequency physics, that law is de-
rived most simply from the gyrokinetic equation, as shown by Scott & Smirnov
(2010) and Brizard & Tronko (2011). However, there has been concern that
somehow the gyrokinetic law, even if correct, is somehow irrelevant. Since one
is ultimately concerned with the collection of actual particles that constitute the
true plasma, surely one must examine the momentum conservation law for the
true particles; perhaps its content is distinct from the gyrokinetic law. However,
we will argue that this is not the case. There is just one conservation law, al-
though there are multiple paths to its derivation and its form can be written in
different ways. The connection between the various forms is the transformation
law T between the particle and the gyrocenter variables (z = Tz) or between
the particle and gyrocenter distributions (f = T∗F ).

4.1 Momentum equation for particles

First, we follow Parra & Catto by studying the momentum equation for the true
particles. The derivation of that equation is well known but is worth reviewing.
Let us begin with the Vlasov equation43

∂fs
∂t

+ v ·∇fs +
( q
m

)
s
(E + c−1v ×B) · ∂fs

∂v
= 0. (39)

We use the normalization convention
∫
dv nsfs(x,v, t) = ňs(x, t), (40)

where ns is the mean (spatially constant) density of species s; the check accent
denotes a particle (as opposed to gyrocenter) moment. From this, one finds that

43The inclusion of a collision operator does not change the final momentum conservation
law because that operator conserves momentum when summed over species.
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the mean particle flow ǔ is obtained from

ňs(x, t)ǔs(x, t) =

∫
dv nsvfs(x,v, t). (41)

(In this convention, dv f is dimensionless, so all other dimensions are explicit.)
Upon multiplying Eq. (39) by msnsv and integrating over v, one is led to the
familiar moment equation

∂t[(ňmǔ)s] +∇ · Π̌s = (ňq)s(E + c−1ǔs ×B), (42)

where
Π̌s

.
= [[(nm)sv v]] (43)

and the double-bracket notation denotes the velocity average with fs. [In many
discussions, such as that of Braginskii (1965), the peculiar velocity δv

.
= v − ǔ

is introduced and one writes Π̌ = ňmǔǔ + π̌, where π̌ is conventionally called
the stress tensor; however, it is unnecessary to introduce π̌ here.] Although the
kinetic part on the left-hand side of Eq. (42) is in locally conservative form, the
electromagnetic part on the right is not obviously of that form. We will use
the quasineutrality approximation ρ̌

.
=
∑
s(ňq)s = 0, Ampère’s law ∇× B =

(4π/c)̌, and the identity (for arbitrary V )

(∇× V )× V = (V ·∇)V − 1

2
∇(V 2). (44)

Then summing Eq. (42) over species annihilates the E term, introduces j×B,
and with the identity (44) leads to the momentum conservation law

∂

∂t

(∑

s

(ňm)sǔs

)
= ∇ · Ť, (45)

where
Ť
.
= TM − Π̌ (46)

and

TM
.
=

1

4π

(
BB − 1

2
B2I

)
(47)

is the magnetic part of the Maxwell stress tensor. (If one does not invoke
quasineutrality and does include the displacement current, the Poynting mo-
mentum flux and the electric part of the Maxwell tensor also appear.)

Equation (45) is a local conservation law (it is not integrated over space),
and it is valid irrespective of any spatial symmetries. It is not optimally use-
ful, however, because the kinetic momentum fluxes are coupled to the Maxwell
stresses, and it does not exploit any simplifications that result from toroidal
symmetry. Furthermore, it does not describe the evolution of angular momen-
tum (plasma rotation). To obtain an equation for angular momentum density,
we use the flux coordinates {ψ, θ, ϕ} (see Appendix A) and dot Eq. (45) with
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the basis vector (see Sec. A.1) eϕ = Rϕ̂ in order to obtain an evolution equation
for the covariant toroidal component uϕ of u:

∂

∂t

(∑

s

(ňm)suϕs

)
= eϕ · (∇ · Ť). (48)

Because eϕ is not a constant in toroidal geometry, it cannot be trivially moved
inside of the divergence. We adopt the convention that the divergence is a
contraction on the second tensor index (in fact, the tensors of interest here are
symmetric). Then, in Cartesian components only, one has

e · (∇ · T) = ei(∂kT
k
i ) = ∂k(e

iT ki )− T ki ∂ke
i, (49)

The last term expresses the fact that the divergence of a tensor in a general
coordinate system involves the covariant derivative, which is expressed in terms
of the connection coefficients or Christoffel symbols Γijk. In coordinate-free
notation, for a mixed second-rank tensor [see Eq. (A27)],

e · (∇ · T) = ∇ · (e · T)− T : (∇e). (50)

Now ∇eϕ 6= 0. However, we show in footnote 49 that ∇eϕ is antisymmetric,
so its contraction with the symmetric tensor T vanishes. To further simplify
Eq. (48), using Eq. (50), one can apply the flux-surface average (see Sec. B.3),
which we denote by 〈. . . 〉:

∂

∂t

(∑

s

(ňm)s〈ǔϕs〉
)

= 〈∇ · (eϕ · Ť)〉. (51)

The quantity inside the divergence is a vector,44 so one may use formula (B11)
for the flux-surface average of a divergence: for arbitrary vector A,

〈∇ ·A〉 = 1

V ′

∂

∂ψ
(V ′〈Aψ〉), (52)

where V ′ is defined by Eq. (B9). Thus

∂

∂t

(∑

s

(ňm)s〈ǔϕs〉
)

=
1

V ′

∂

∂ψ
(V ′〈Ťψϕ 〉). (53)

Furthermore, (TM )ψϕ = 0 since Bψ = 0. Therefore, one finds

∂

∂t

(∑

s

(ňm)s〈ǔϕs〉
)

= − 1

V ′

∂

∂ψ
(V ′〈Π̌ψϕ〉), (54)

a well-known result that is usually obtained by different means. It is usually
summarized by saying, somewhat incompletely, that “the [flux-surface-averaged]
toroidal rotation depends on the off-diagonal component of the stress tensor.”

44In an arbitrary coordinate system, one has T = T ki e
i
⊗

ek, so eϕ · T = T kϕek.
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Although the real-space conservation law (54) is correct, it is not necessarily
in optimal form. It is defined in terms of the Π̌ defined by Eq. (43), which in-
cludes both mean flows and fluctuating stresses. Also, it evolves the momentum
of all particle flows, including the diamagnetic flow u∗. Diamagnetic current
is, of course, a real physical effect. On the other hand, it is well known that
manipulations involving the particle moment equations inevitably involve one
with the so-called gyroviscous cancellation (Hinton & Horton, 1971), which re-
moves u∗ from the advective nonlinearities. Brizard (1992) showed that the
gyroviscous cancellation can be avoided altogether in the gyrokinetic formu-
lation. A drawback to Eq. (54) is that it is not formulated in terms of the
gyrocenter quantities that one knows to be physically important. Nevertheless,
it is a correct equation. Although the stress tensor is expressed in terms of a
second velocity moment of the particle distribution function f , one can instead
calculate it from the gyrocenter PDF F by using the pullback transformation
f = T∗F . That is the approach followed by Parra and coworkers. That is,
although they use the gyrokinetic equation for intermediate calculations, they
bring the results back to the laboratory space of the real particles. That is
a sensible and direct way to proceed. They explicate the algebraic details in
various of their papers; we shall not reproduce them here.

4.2 Angular momentum conservation from the gyrokinetic
equation

The alternate way of proceeding is to examine momentum conservation from
the point of view of gyrocenters rather than particles. Indeed, Scott & Smirnov
(2010) and Brizard & Tronko (2011) have employed Noether methods to obtain
a conservation law for toroidal angular momentum density written in terms
of the gyrocenter quantities. To introduce the form of that law, we will first
consider its derivation for an important and physically transparent special case.
That leads one to the general form of the result with a minimum of algebra. The
general form is discussed further in Appendixes I and J, and its implications are
discussed in Sec. 5.

To motivate the final form of the gyrokinetic conservation law for toroidal
angular momentum, we give in the next few sections a simplified derivation
using the assumptions of cold ions (no FLR effects), the lowest-order approxi-
mation to the ion polarization drift velocity, and constant B. Remarkably, the
approximate calculation leads to a form of the conservation law that is identical
to that which follows from the complete theory [recorded in Eq. (92) and derived
in full detail in Appendix I]; only the definitions of some of the variables and
fluxes need to be slightly generalized.

The calculation we shall give here is not the shortest. [For the most complete
derivation, which proceeds from the conservation of canonical angular momen-
tum, see Brizard & Tronko (2011).] However, it has the virtue of being explicit
and elementary. We shall merely consider (with the benefit of hindsight) plau-
sible quantities that ought to participate in the evolution of toroidal angular
momentum, and show that their sum leads to a proper local conservation law.
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Importantly, our direct calculation does not proceed from a variational princi-
ple. That allows us to explain what happens when the automatic consistency
built into the variational approach is violated.

4.2.1 Useful identities

In the manipulations, the identity45

(E ×B)ϕ = Eψ (56)

(true for arbitrary E) will be important. When E is in fact the electric field,
this relates the toroidal (covariant) component of the E × B velocity to the
radial (contravariant) component of the field (which is related to the electric
polarization). Another useful identity that follows by inverting Eq. (56) is46

(B−1b̂×E)ψ = (E⊥)ϕ. (57)

4.2.2 E ×B flows and polarization current

An alternate way of expressing Eq. (56) is to consider the time rate of change of
the associated angular momentum density (of the ion gyrocenter E ×B flow):

∂

∂t

(
(Nm)i

c

B2
(E ×B)ϕ

)
=

(Nm)ic

B2

∂Eψ

∂t
≈ 1

c
[(Nq)iu

ψ
p ] ≡

1

c
Jψp , (58)

where Jp is the (lowest-order approximation to the) polarization current derived
from the ion polarization drift velocity

upol =
1

ωci

∂

∂t

(
cE⊥

B

)
. (59)

Now polarization current Jpol and gyrocenter current JG are related by the
current continuity equation, which under quasineutrality is ∇ · J = ∇ · (JG +
Jpol) = 0 or

∇ · Jpol = −∇ · JG = ∂tρ
G. (60)

45With the representation for an axisymmetric field B = I∇ϕ + ∇ϕ × ∇ψ discussed in
Sec. A.6, one has

(E ×B)ϕ = −eϕ ×B ·E (55a)

= −eϕ × (I∇ϕ+∇ϕ×∇ψ) ·E (55b)

= −[∇ϕ(eϕ ·∇ψ) −∇ψ(eϕ ·∇ϕ)] ·E (55c)

= ∇ψ ·E ≡ Eψ. (55d)

46The ⊥ is important. If E is replaced by the gradient of a scalar s, the identity reads
(B−1b̂ × ∇s)ψ = (∇⊥s)ϕ. That is not the same as (∇s)ϕ = eϕ · ∇s = ∂ϕs because the
full gradient also has a parallel component that in general has a projection on the toroidal
direction.
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Under quasineutrality, the gyrocenter charge ρG ≡ ρ (no check accent) is related
to gyrocenter polarization by

ρG = ∇ ·P (61)

(an exact result provided that P is defined appropriately, including nonlinear
corrections), so Eq. (60) can be written as

∇ · Jpol = ∇ · (∂tP). (62)

Upon flux-surface averaging this equation, one finds

1

V ′

∂

∂ψ
[V ′(∂t〈Pψ〉 − 〈Jψp 〉)] = 0. (63)

Integration leads to
〈Jψp 〉 = ∂t〈Pψ〉, (64)

where the integration constant can be argued to vanish by virtue of regularity
at the origin. By integration of Eq. (58) in time, we thus learn that the toroidal
angular momentum density of the averaged perpendicular gyrocenter flow is to
lowest order the averaged radial polarization:

〈(Nm)iUEϕ〉 ≈ c−1〈Pψ〉. (65)

(In the detailed derivation, the left-hand side is summed over species, but the
ions dominate.) From this argument, one anticipates that the final gyrokinetic
momentum conservation law will involve the radial polarization as an important
constituent.

4.2.3 Gyrocenter parallel flow

Gyrocenter parallel flow also has a projection onto the toroidal direction (unless

B is fully poloidal). Note that U‖ · eϕ = U‖b̂ · eϕ = U‖bϕ, so consider the
quantity ∂t〈

∑
s(Nm)sU‖bϕ〉. An equation for the parallel flow may be obtained

from the gyrokinetic equation, which can be conveniently written in conservative
form:

∂(JF )
∂t

+∇ · [(U b̂+ V
n

E)JF ] +
∂

∂U

( q
m
E
n

‖JF
)
= 0. (66)

Here J is the Jacobian of the gyrocenter transformation, the overline means a
effective, gyroaveraged quantity, and the n superscript indicates that in prin-
ciple one must include nonlinear corrections. Upon multiplying by NU , where
N is the average density of gyrocenters,47 and integrating over the momentum
coordinates U and µ, one obtains

∂(NU‖)

∂t
+∇ · ([[NU2]]b̂) +∇ · [[NUV

n

E ]] =
q

m
[[N E

n

‖ ]], (67)

47One may assume that N = n. Although in some formulas we use N to emphasize that
we are dealing with gyrocenters, in others the upper-case notation is obstrusive and we just
use n.
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where for gyrocenter quantities [[A]]
.
=
∫
dU dµJ AF ≡

∫
dpAF . The term in b̂

vanishes under a flux-surface average. The latter two terms cannot be evaluated
trivially because of the momentum dependence of the effective potential and the
nonlinear correction terms. Upon multiplying Eq. (67) by ms, summing over
species, and flux-surface averaging, one obtains

∂

∂t

(
〈
∑

s

(Nm)sU‖s〉
)
+

1

V ′

∂

∂ψ
(V ′Πψ‖ ) =

∑

s

〈[[(Nq)sE
n

‖ ]]〉, (68)

where
Πψ‖

.
= 〈
∑

s

[[(Nm)sUV
n,ψ

E ]]〉. (69)

To obtain an equation for the toroidal component of the parallel gyrocenter
flow, one must multiply Eq. (68) by bϕ. In the general case with nonconstant B,
bϕ can be passed through the ∂ψ and the flux-surface average in the second
term only at the price of a correction term involving ∂ψbϕ. In the full derivation
(Appendix I), that correction is canceled by another one relating to the evolution
of the polarization due to magnetic drifts. Here we shall ignore such terms in
the interest of exposing the basic structure of the theory. Then

∂

∂t

(
〈
∑

s

(Nm)sU‖sbϕ〉
)
+

1

V ′

∂

∂ψ
(V ′Πψ‖ϕ) ≈

∑

s

〈[[(Nq)sE
n

‖ ]]bϕ〉 ≡ R, (70)

where
Πψ‖ϕ

.
= 〈
∑

s

[[(Nm)sUbϕV
n,ψ

E ]]〉. (71)

The term in Πψ‖ϕ is obviously in conservative form and will persist in the final

conservation law; it is a parallel–perpendicular Reynolds stress.
Now we shall manipulate the right-hand side R of Eq. (70), which de-

scribes the toroidal force on the gyrocenter due to parallel acceleration. Ignore
FLR effects and write En‖ = E‖ + ∆E‖, where nonlinear corrections are repre-
sented by ∆E‖. Since E‖ is independent of species, the E‖ contribution gives
〈ρGE‖bϕ〉 = 〈(∇ ·P)E‖bϕ〉. Now

E‖bϕ = E · b̂ b̂ · eϕ = E · [I− (I− b̂ b̂)] · eϕ = Eϕ − (E⊥)ϕ. (72)

Furthermore, we have from Eq. (57) that (E⊥)ϕ = −c−1uψE . Note that the
terms in R stemming from ρG are of second order (P ×E‖) in the electric field,
so for consistency one must keep second-order nonlinear corrections. Thus, one
has ∑

s

(Nq)s∆E‖ = −
∑

s

Nsb̂ ·∇∆Hs, (73)

where ∆H is the nonlinear correction to the Hamiltonian. To second order and
in the absence of FLR effects, the form of this term can be guessed correctly by
noting that the Lagrangian density contains the terms −H+ 1

8πE
2. One expects
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that the kinetic energy of fluid motion should add to the electrostatic energy;
thus one can argue heuristically (a much more detailed discussion is given in
Appendix F) that

∆Hi ≈ −1

2
miu

2
E (74)

and ∆He ≈ 0, so one has

R = 〈(∇ ·P)(Eϕ + c−1uψE)〉 −
∑

s

〈Nsb̂ ·∇∆Hsbϕ〉. (75)

4.2.4 Simplified momentum equation

Er

VE ⊥

U

VE ⊥ φ φU

B

ψθ

φ

Figure 2: Important vectors related to toroidal flow. The total flow in the toroidal
direction is the toroidal projection of the sum of the parallel gyrocenter flow and the
perpendicular E ×B flow arising from the radial polarization field. (The reader may
question why the toroidal projection of the magnetic drifts does not appear. This is a
subtle point; see foonote 54 on p. 56.)

This result for R is not in conservative form. However, we have argued
that the time rate of change of the radial polarization should also enter the
final momentum equation. To find that equation, we will sum the parallel
and perpendicular forces. Both of the parallel and perpendicular flows have
projections onto the toroidal direction (Fig. 2). First, recall Eq. (64). Explicitly,
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the radial gyrocenter current is (no FLR effects)

JψG =
∑

s

(Nq)s

(
uψE +

c

qsB
(b̂×∇∆Hs)

ψ

)
. (76)

(We have assumed here that ∆H has no dependence on velocity.) The first term
produces the gyrocenter charge, which can be replaced by ∇ ·P. For the second
term, use the identity (57). Thus

c−1〈JψG〉 = c−1〈(∇ ·P)uψE〉+
∑

s

〈Ns(∇⊥∆Hs)ϕ〉. (77)

Upon adding Eq. (64) to Eq. (70) and using the identity (57), one finds

∂

∂t

(
c−1〈Pψ〉+

〈∑

s

(Nm)sU‖sbϕ

〉)
+

1

V ′

∂

∂ψ
(V ′Πψ‖ϕ)

= 〈(∇ ·P)Eϕ〉 −
∑

s

[〈Ns[bϕb̂ ·∇∆H + (∇⊥∆H)ϕ]〉. (78)

Note the cancellation of the terms involving uψE .

To simplify the terms involving ∆H , note that bϕb̂ = eϕ · b̂ b̂ and that

(∇⊥∆H)ϕ = eϕ · [(I − b̂ b̂) · ∇∆H ]. Therefore, the terms in b̂ cancel and one
has48

bϕb̂ ·∇∆H + (∇⊥∆H)ϕ = eϕ ·∇∆H = ∂ϕ∆H. (80)

Finally, note that (in the present example of the cold-ion limit; see Ap-
pendix F) −∆H = 1

2mu
2
E ∝ |∇⊥φ|2, and consider

1

2
∂ϕ|∇⊥φ|2 = ∇⊥φ · ∂ϕ∇⊥φ ∝ −P · ∂ϕ∇⊥φ, (81)

where one can easily verify that the dimensional factors work out correctly. If
one could pass the ∂ϕ through the ∇⊥, the resulting term (which would involve
−eϕ ·∇φ = Eϕ) would add to the first term on the right-hand side of Eq. (78)
and create the perfect divergence ∇ · (P Eϕ), thereby completing the derivation
of the local conservation law. Therefore, consider the commutator [∂ϕ,∇⊥].
Unfortunately, this commutator does not vanish49 because ∂ϕ = eϕ · ∇ and

48Note that Eϕ = −∂ϕφ, so the right-hand side of Eq. (78) can be written as
−
∑
s〈Ns∂ϕHs〉, where H

.
= qφ+∆H. In the exact theory, this term generalizes trivially to

−
∑

s

Ns〈

∫
dv Fs∂ϕHs〉. (79)

49 In Appendix A.1 of Scott & Smirnov (2010), it appears to be stated that the vanishing
of this and similar commutators is a requirement for the success of the theory. In the usual
interpretation of the gradient operator as ∇ = ei∂i, that statement is incorrect. A simple
illustration is obtained by considering an (R, ϕ) polar coordinate system. One has

∂ϕ∇ = ∂ϕ(∇R∂R +∇ϕ∂ϕ) = ∇R∂R∂ϕ +∇ϕ∂ϕ∂ϕ + ϕ̂ ∂R − R̂R−1∂ϕ; (82)
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both eϕ and b̂ depend on space (even in an axisymmetric torus). However, one
can show50 that in an axisymmetric torus one does have

∇⊥s · ∂ϕ∇⊥s = ∇⊥s ·∇⊥(∂ϕs) (89)

for an arbitrary scalar field s. Thus, the net right-hand side reduces to 〈∇ ·
(PEϕ)〉, and one obtains the axisymmetric conservation law for toroidal angular
momentum

∂

∂t

(
Pϕ‖ + c−1〈Pψ〉

)
+

1

V ′

∂

∂ψ
(V ′Πψ‖ϕ) +

1

V ′

∂

∂ψ

(
V ′

〈
Pψ ∂φ

∂ϕ

〉)
= 0, (90)

where
Pϕ‖ .

= 〈
∑

s

(Nm)sU‖sbϕ〉. (91)

In the present approximate derivation, which omits FLR corrections, the polar-
ization is proportional to the field (a first-order quantity). Its time derivative,
however, is small, and an important lesson is that in order to obtain the consis-
tent time evolution equation one had to consider second-order gyrocenter drifts

thus
[∂ϕ,∇] = ϕ̂ ∂R − R̂R−1∂ϕ 6= 0. (83)

As a consistency check, consider the scalar field s = ϕ. One has 1
2
∂ϕ|∇ϕ|2 = 1

2
∂ϕ(R−2) = 0.

This result also follows by introducing the commutator:

1

2
∂ϕ|∇ϕ|2 = ∇ϕ · ∂ϕ∇ϕ = ∇ϕ ·∇(1) +∇ϕ · [∂ϕ,∇]ϕ = 0 + R−1ϕ̂ · (−R̂R−1) = 0. (84)

Although the commutator itself does not vanish, it is orthogonal to the required gradient.
As another example, consider ∇eϕ, which arises in the derivation of the real-space conser-

vation law and, more generally, in the theory of covariant differentiation. One has eϕ = ∂ϕx,
so

∇eϕ = ∇∂ϕx = ∂ϕ∇x+ [∇, ∂ϕ]x = [∇, ∂ϕ]x = (R̂R−1∂ϕ− ϕ̂∂R)x = R̂ ϕ̂− ϕ̂R̂. (85)

Obviously this quantity does not vanish, but importantly it is antisymmetric.
50To prove this, write |∇⊥s|

2 = |∇s|2 − (∇‖s)
2 and separately consider the cases for the

full and parallel gradients. One has

1

2
∂ϕ|∇s|2 =

1

2

∂

∂ϕ

(
∂is g

ij∂js
)
= ∂is ∂ϕ

(
gij∂js

)
(86a)

= ∂is g
ij∂ϕ∂js = ∂is g

ij∂j∂ϕs (86b)

= ∇s ·∇(∂ϕs). (86c)

We used ∂ϕgij = 0, valid for axisymmetry. Similarly for the parallel gradients,

1

2
∂ϕ(∇‖s)

2 =
1

2

∂

∂ϕ
[(bi∂is)

2] (87a)

= bi∂is ∂ϕ(b
j∂js) = bi∂is b

j∂j(∂ϕs) (87b)

= ∇‖s∇‖(∂ϕs). (87c)

Here we used ∂ϕbi = 0 for axisymmetry. Explicitly, from Eq. (B2), one has bi = Bi/B with

Bψ = 0, Bθ = J−1, Bϕ = I/R2; (88)

all of I, J , R, and B are ϕ-independent for axisymmetry.
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in the equations of motion. More generally, the fact that nth-order polarization
is related to terms of order n+1 in the drifts is a consequence of the fact that the
gyrokinetic–Poisson system is derivable from a Lagrangian variational principle,
as we will discuss later in more detail.

This approximate derivation captures the essence of the manipulations.
It is remarkable that the generalization obtained using Noether methods by
Scott & Smirnov (2010) and later by Brizard & Tronko (2011) retains this same
form. Explicitly, those authors find

∂(Pϕ‖ + c−1Pψ)
∂t

+
1

V ′

∂

∂ψ
V ′(Γψϕ‖ + Γψϕ⊥) = 0, (92)

where

Γψϕ‖
.
=
∑

s

(Nm)s

〈∫

P

FV ψU‖bϕ

〉
, (93a)

Γψϕ⊥ ≡ Γ
.
=
∑

s

Ns

〈∫

P

F

(
∂H

∂E

)ψ
∂φ

∂ϕ

〉
+ · · · . (93b)

The centered dots in Eq. (93b) signify additional terms involving derivatives
of H with respect to higher-order gradients of the potential. This formula
differs from Eq. (90) only in that the complete polarization Pψ = (∂H/∂E)ψ

is kept, quantities are defined in terms of the full Hamiltonian, and additional
terms appear in the definition of Γψϕ⊥.

Although we have gotten to the proper form of the answer, the manipulations
in this section and in Appendix I may leave one cold. Although one suspects
that conservation of canonical toroidal angular momentum should play a role,
we did not begin with that constraint. In the more formal derivations of Scott
& Smirnov and Brizard & Tronko canonical momentum conservation is brought
to the fore. We will discuss that further in Sec. 5.3.

4.2.5 Approximate derivation of the angular momentum conserva-
tion law using particle variables

Further insight into the content of the conservation law can be obtained by
rederiving it from the particle equations of motion. Although this is substan-
tially more tedious, it demonstrates that there are not two distinct conservation
laws (i.e., one for particles and one for gyrocenters); there is just one that is
appropriate for slow motions in a magnetized plasma.

We begin with the real-space conservation law (54), repeated here for con-
venience:

∂

∂t

(∑

s

(ňm)s〈ǔϕs〉
)

= − 1

V ′

∂

∂ψ
(V ′〈Π̌ψϕ〉). (94)

There are three ways in which Eq. (94) differs from the gyrokinetic conservation
law:
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1. It involves the particle density n rather than the gyrocenter density N .

2. It evolves the particle fluid flow ǔ = U b̂+ uE + u∗ + · · · ; gyrocenters do
not move with the diamagnetic velocity u∗.

3. The stress tensor Π̌
.
=
∑
s(nm)svvf describes the particle-based stresses,

which differ from those appearing in the gyrokinetic conservation law.

What needs to be done is to transform Eq. (94) into the gyrocenter represen-
tation. The calculations bear some resemblance to those performed by Scott
(2007). They are tedious and are omitted from the present report. The con-
clusion, however, is clear: momentum conservation can be expressed in either
a particle or a gyrocenter representation. Those are connected by the pullback
transformation T∗.

4.2.6 Energetic consistency and momentum conservation

One can now discuss what happens when the field-theoretic consistency be-
tween the gyrokinetic equation and the gyrokinetic Poisson equation are vio-
lated. First, we summarize the four-step derivation of the momentum conserva-
tion equation given by Brizard & Tronko (2011) (and which closely tracks the
procedure of Scott & Smirnov).

1. Write the equation for parallel–toroidal canonical momentum.
One derives (the details are omitted)

∂Pϕ‖
∂t

+∇ · Πϕ =
1

c
ψ
∂ρG

∂t
−
∑

s

N

∫
dpF

∂H

∂φ
, (95)

where

Πϕ
.
=
∑∫

F
dgyX

dt
pgyϕ (96)

is the canonical gyrocenter Reynolds stress tensor. Here pgyϕ is the gyro-
center canonical momentum [Eq. (108)].

2. Flux-surface average. The flux-surface average of Eq. (95) is

∂〈Pϕ‖〉
∂t

= − 1

V ′

∂

∂ψ

(
V ′〈Πψϕ〉

)
+

1

c
ψ
∂〈ρG〉
∂t

−
∑

N

〈∫
F
∂H

∂ϕ

〉
, (97)

where V ′ is given by Eq. (B9) and where one finds

〈Πψϕ〉 = 〈Πψ‖ϕ〉 −
1

c
ψ〈Jψgy〉. (98)

3. Use the gyrocenter quasineutrality relation to relate current and
polarization. We have already done that; see Eq. (64).
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4. Derive the parallel-toroidal momentum transport equation. One
finds

∂

∂t

(
〈Pϕ‖〉+ c−1〈Pψ〉

)
+

1

V ′

∂

∂ψ

(
V ′〈Πψ‖ϕ〉

)
= −

∑
N

〈∫
F
∂H

∂ϕ

〉
. (99)

In the methodology outlined here, this result follows simply,51 in general
geometry. If, on the other hand, one directly calculates the time deriva-
tives of 〈Pϕ‖〉 and 〈Pψ〉, then sums them, the algebra is tedious and a
variety of cancellations occur. Those are detailed in Appendix I; it is
instructive to see them explicitly.

To complete the derivation, the crux of the argument, as emphasized by
Scott & Smirnov, is to show that the last term of Eq. (99) can be written
as a divergence. One finds (see Sec. I.2 for more discussion) that

∑
N

∫
F
∂H

∂ϕ
= (ρG −∇ ·PGKE)

∂φ

∂ϕ
+∇ · (. . . ). (102)

Here ρG
.
=
∑

(Nq)
∫
F is the gyrocenter charge, i.e., whatever charge

density follows by integrating the gyrocenter distribution function over
velocity. By quasineutrality, it is in balance with whatever polarization
effect PPoisson is kept in the gyrokinetic Poisson equation. [For example,
the pullback transformation could be truncated to second order, as was
done by Dubin et al. (1983).] The polarization PGKE, which is calculated
from the drift effects in the gyrokinetic equation, is given as a series, which
in practice is truncated to some order. Thus, one can write the key factor
on the right-hand side of Eq. (102) as

ρG −∇ ·PGKE = ∇ ·PPoisson −∇ ·PGKE. (103)

Now when the gyrokinetic–Poisson system is derived variationally from a
single gyrokinetic Hamiltonian, the approximations to the two polariza-
tions in Eq. (103) are identical, the potentially nonconservative term van-
ishes, and one recovers a properly local conservation law. However, if that
consistency is violated, spurious nonconservative terms will arise. A simple

51 Begin with Eq. (97) and focus on the two terms explicitly proportional to ψ — the ∂tρG

term in Eq. (97) and the 〈Jψgy〉 term in Eq. (98). The time derivative of the quasineutrality
equation (61) yields after flux-surface averaging

∂〈ρG〉

∂t
=

1

V ′

∂

∂ψ
V ′ ∂〈P

ψ〉

∂t
. (100)

The 〈Jψgy〉 term was replaced by ∂t〈Pψ〉 by using Eq. (64) (the gyrocenter current is the
negative of the polarization current). The explicit ψ terms on the right-hand side of Eq. (97)
[including the last term of Eq. (98)] then sum to

−
1

V ′

∂

∂ψ
V ′

(
ψ
1

c

∂〈Pψ〉

∂t

)
+

1

c
ψ

1

V ′

∂

∂ψ
V ′ ∂〈P

ψ〉

∂t
= −

1

c

∂〈Pψ〉

∂t
. (101)

The ψ terms have canceled, a consequence of quasineutrality.
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but important example was given by Parra & Catto (2010a), who consid-
ered [in the context of the slab calculation done by Dubin et al. (1983)] the
implications of retaining second-order terms in Poisson’s equation and no
more than second-order terms in the gyrokinetic equation. They showed
explicitly how that inconsistent approximation led to a spurious noncon-
servative term (related to the derivative of a third-order Hamiltonian) and
argued that the spurious term would disappear if one included third-order
drifts. That is the energetic consistency discussed more generally by Scott
& Smirnov.

The work of Parra & Catto (2010a) made clear that the third-order Hamil-
tonian was required in a slab calculation. They worried (see the excerpt in
Sec. L.8) that in the presence of magnetic inhomogeneity one might have
to work to fourth order. That does not happen, however; cancellations
occur such that working to third order is adequate. For the details, see
Sec. I.1.

5 Discussion of the ordering issues, and Answers
to the Charge questions

With Secs. 3 and 4, we have provided the background required for an appreci-
ation of the controversy regarding momentum conservation and ordering. We
now turn to a discussion of their consequences.

5.1 The original ordering estimates

Let us begin by considering Parra’s original ordering estimates, which are sum-
marized in Table 1.

Method Order of fi Chapter

Gyrokinetic quasineutrality equation ǫ4i fMi 3

Radial transport
of toroidal
angular
momentum

Evaluated directly from fi ǫ3i fMi 2

Moment equation ǫ2i fMi 5

Moment equation and B/Bpol ≫ 1 (B/Bpol)ǫ2i fMi 5

Table 1: Comparison of different methods to obtain the long-wavelength ax-
isymmetric radial electric field. From the PhD dissertation of Parra (2009,
Table 1.1). (In Parra’s original notation, the ordering parameter was δ; we
use ǫ in this report.)

Parra couches the discussion in terms of the calculation of the long-wavelength
axisymmetric part of the radial electric field; he states the precision of the ion
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(gyrocenter) distribution function (which he calles fi) that is required in various
methodologies, which we shall first define, then discuss.

1. Gyrokinetic quasineutrality equation: This pertains to full-F simu-
lations using the gyrokinetic equation and GK Maxwell equations. The
simulation is supposed to be run to transport times scales. In this method,
no subsidiary fluid equation is used.

2. Radial transport of toroidal angular momentum: In the following
methods, it is supposed that momentum transport is obtained by inte-
grating the fluid equation for toroidal angular momentum; the GK system
is used to evaluate the requisite stress tensor.

(a) Evaluated directed from fi: Here the definition of the stress
tensor Π is used directly. As we explained in Sec. 2.2, that stress
tensor is O(ǫ3) in the low-flow ordering. Since Π is a velocity moment
of F , one must calculate F to O(ǫ3) in the direct approach.

(b) Moment equation: Instead of calculating Π directly, Parra showed
that one can use a moment equation to calculate the required off-
diagonal components of Π. In that equation, the off-diagonal com-
ponents arise from the Lorentz force term, which is proportional
to ωci ∼ ǫ−1. The solution then has the form ǫ × (driving term),
so the driving term need be calculated to just second order in order
to obtain a third-order result. Thus, the moment method saves an
order.

(c) Moment equation and B/Bpol ≫ 1: Further simplifications
ensue when Bpol/B is taken to be small. (Although that is usually
satisfactory, it does not hold for spherical tokamaks such as NSTX.)
We will not discuss that approximation in this report.

5.1.1 Discussion of the moment method

With method 2(b), one sees that the distribution function need be calculated
only through second order in order to obtain the third-order fluxes. But working
at least to second order is essential; first-order drifts (e.g., the E×B drift) and
first-order polarization in Poisson’s equation are inadequate. Note that although
the E×B drift is nominally of first order, since VE ∝ φ it can pick up a second-
order piece from a second-order potential.

As Parra & Catto have argued, it would appear that use of the fluid equation
for toroidal angular momentum, in conjunction with a second-order description
of the gyrokinetics, is the most efficient way to proceed to a theory of the
radial electric field and momentum transport on the long transport time scale.
Ongoing research is proceeding in that direction (Barnes et al., 2013).

5.1.2 Full-F : Primitive ordering considerations
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In this section we present a version of the ordering argument of Parra & Catto
that provides a relatively simple demonstration that trying to use the gyrokinetic
quasineutrality equation to calculate the mean radial electric field will require
keeping the Hamiltonian through third order, H3 ∼ ǫ3T . This supports the
claim of Parra & Catto that previous approaches are not sufficiently accurate
to determine rotation profiles on the transport time scale in the low-flow gyro-
Bohm regime (since previous approaches use at most only the second-order
Hamiltonian or partial third-order terms).

In Secs. 5.3 and 5.4 we will give similar ordering arguments in the notation
of the gyrokinetic momentum conservation law of Scott & Smirnov; we will find
again that a third-order Hamiltonian is required. For a more detailed discussion,
see Appendix I.

The original concern, reflected in Table 1, was that the F in this approach
would even be required to fourth order, so that a fourth-order Hamiltonian
would be needed. It was the extreme smallness of ǫ4 that led to some of the initial
skepticism. Here we reproduce that conclusion, but then discuss heuristically
why it turns out to be overly pessimistic because of a cancellation that occurs.
In fact, the quasineutrality constraint implies that at most only third-order
effects are necessary, in agreement with the estimated size of the momentum
flux. But even this level of accuracy is beyond what present codes can do or
seems practical to do (particularly given that there is a more efficient alternative
approach that Parra & Catto point out).

In the long-wavelength limit, k⊥ρi ≪ 1, the gyrokinetic quasineutrality equa-
tion that is usually used to determine the electrostatic potential φ reduces to

− (nq)iρ
2
s∇2

⊥

(
eφ

Te

)
=
∑

s

(nq)s

∫
dv Fs. (104)

Here the left-hand side is the (negative of) the ion polarization charge density
(the precise position of the ni with respect to the divergence operator is irrel-
evant for the following considerations), and the right-hand side is the charge
density of gyrocenters. Here qs, ns, and Fs are the charge, density, and gyro-
center distribution function of species s, ρs

.
= cs/ωci is the ion sound gyroradius,

n is the mean density, cs
.
= (ZTe/mi)

1/2 is the ion sound speed, and Te is the
electron temperature. (FLR corrections have been neglected. Those can be
included, but they do not affect the following primitive scaling argument.) Fol-
lowing the procedure used by Parra & Catto in various of their publications,
take the time derivative of both sides and substitute on the right-hand side using
the gyrokinetic equation in the conservative form ∂tFs = −∇ · (Vd,sFs) + · · · ,
where Vd,s is the gyrocenter drift velocity, to get

− ∂

∂t

[
(nq)iρ

2
s∇2

⊥

(
eφ

Te

)]
= −∇ ·

(∑

s

(nq)s

∫
dv FsVd,s

)
. (105)

(In the general theory, one must worry about a nontrivial Jacobian, but the
present arguments capture the proper flavor.) Consider the long-wavelength
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(equilibrium-scale) mean component of the electrostatic potential found from
this equation. Assume (for the reasons given in Sec. 2.2) that the equilibrium-
scale mean toroidal momentum evolves on a gyro-Bohm transport time scale,
∂t ∼ DgB∇2

⊥ ∼ (cs/L)ρ
2
s/L

2 ∼ ǫ2(cs/L), where L is the equilibrium scale length
(i.e., typically of the order of the minor radius here), and ǫ

.
= ρs/L is the funda-

mental gyrokinetic expansion parameter. (As stated in Sec. 2.2, the assumption
of a gyro-Bohm transport time scale does not mean that the momentum fluxes
are necessarily diffusive, only that they are of this magnitude; they may contain
a pinch term, residual stresses, off-diagonal transport terms, etc.) In the low-
flow ordering regime, the toroidal rotation scales as uϕ ∼ ǫcs by assumption,
and the corresponding long-wavelength equilibrium-scale potential φ0 satisfies
eφ0/Te ∼ 1 (here we are taking all geometric factors like ι (the inverse of the
safety factor q), r/R, or Bθ/Bϕ to be of order unity and focusing on the ρ/L
scaling). Upon taking ∇⊥ ∼ 1/L, the order of magnitude of the left-hand side
of this equation is seen to be

LHS ∼ cs
L
eniǫ

4 (106)

and the right-hand side (using
∫
dv FsnsVd,s ∼ nsVd,s) is of the order

RHS ∼ 1

L
eniVd,s. (107)

Balancing these tells us that one apparently needs to calculate very small drifts
of order Vd,s ∼ ǫ4cs in order to accurately calculate the evolution of the momen-
tum on the very slow gyro-Bohm transport time scale. This reproduces Parra’s
original estimate. [See also the discussion in Parra & Catto (2010a).]

However, if one examines the argument more deeply, one finds that one only
needs the drifts through third order, not fourth. To see this, consider the fol-
lowing plausibility argument. Because it is only the mean potential that evolves
on the slow transport time scale, what one actually needs is the average of the
radial flux, 〈

∫
dv FsV

ψ
d,s〉. (This average includes both a flux-surface average

and a time average over the turbulent fluctuations.) Now the drifts are deriv-
able as the Poisson bracket of the gyrocenter position with the Hamiltonian. In
the same way as the E × B drift is ∝ b̂ × ∇φ, a general Hamiltonian gives
rise to a contribution Vd ∝ b̂ × ∇H . For simplicity, consider only this term.
(For inhomogeneous magnetic fields, there are other terms related to the mag-
netic curvature, but they do not change the final conclusion; see Appendix I.)
The gradient operator involves derivatives with respect to poloidal angle θ and
toroidal angle ϕ. If one considers the fourth-order drifts, i.e., those derivable
from H4, then it is adequate to approximate F ≈ F0(ψ), the lowest-order dis-
tribution. Because F0 is constant on a flux surface, it can be removed from the
integral. Then under the flux-surface average the ∂ϕ vanishes for axisymmetric
geometry. The ∂θ does not integrate away exactly in general geometry; however,
integration by parts shows that the ∂θ acts on background magnetic quantities,
which have only macroscopic variation on scale L. Therefore the ∂θ introduces
another power of ǫ and is negligible.
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The argument so far does not exclude the possibility that fourth-order drifts
might arise from slowly varying gradients of an H3. However, some terms were
neglected in this discussion. In general geometry, the toroidal angular momen-
tum has contributions from both the toroidal component of the perpendicular
drift from the radial electric field as well as the toroidal component of the paral-
lel velocity. This leads to cancellations between the perpendicular and parallel
components of the momentum flux such that fourth-order drifts do not matter.
Nevertheless, the argument above illustrates the main ordering problem, which
in the Scott–Smirnov general-geometry calculation of Sec. 5.3 is also found to be
in the perpendicular component of the momentum flux. Furthermore, the above
argument demonstrating the need for H3 is rigorous in the limit of an infinitely
elongated tokamak, where toroidal flow is due entirely to the perpendicular
component. In general geometry, the rigorous version of the argument is given
in Appendix I; analysis of the final equation is given in Appendix J. Those
appendices lead to the conclusion that at most only effects arising from the
third-order Hamiltonian need to be kept in order to satisfy the balance implied
by the quasineutrality constraint. This agrees with the conclusion one reaches
from the Scott–Smirnov conservation law, as discussed in Secs. 5.3 and 5.4.

As we also noted in Sec. 2.5, a third-order Hamiltonian gives rise to two
kinds of effects: directly, to third-order drifts; more subtly, to second-order po-
larization effects. (Polarization is related to a derivative of the Hamiltonian
with respect to potential.) For polarization, it is not necessary to actually con-
struct H3; one can instead calculate the pullback transformation (Appendix D)
directly to second order (which is just one order higher than the first-order effect
that all authors retain). Formally, the reason that third-order drifts also play
a role is that if one retains only second-order drifts and second-order polariza-
tion, there is a small violation of energy conservation. For more details, see the
discussion in Sec. I.2.

Clearly small terms can only be important if lower-order fluxes such as
〈
∫
dv F1VD,1〉 either vanish or are much smaller after flux-surface/ensemble av-

eraging than they first appear to be. As demonstrated in Appendix K, in some
simple limits it is straightforward to show that this is in fact true (because of
quasineutrality constraints and other effects), as it must be in order for gyro-
Bohm scaling of momentum transport to hold.

5.2 The Chapman–Enskog-like approach of Parra & Calvo

Recently Calvo & Parra (2012) have spelled out many of the details of the low-
flow problem in a definitive manuscript describing the order-by-order solution
of the gyrokinetic equation at long wavelengths. Although there is no substitute
for study of that comprehensive paper, we can give the flavor of the argument
here. The basic idea is reminiscent of the Chapman–Enskog procedure for solu-
tion of the kinetic equation for classical transport. In that method, solvability
conditions at higher order constrain the time evolution of lower-order quantities.
[This is a familiar technique in perturbation theory, and indeed was the method
used by Frieman & Chen (1982) to derive the nonlinear gyrokinetic equation.]
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In the present context, the theory proceeds order-by-order as follows:

O(ǫ0): The lowest-order distribution F0 is determined to be a Max-
wellian with slowly varying density and temperature. (Because
of the low-flow ordering, flow is absent from F0.)

O(ǫ1): F1 is determined in terms of F0.

O(ǫ2): The solvability condition for F2 constrains the slow-time evo-
lution of n0 and T0. Then F2 is determined. No constraint on
the radial electric field Er is obtained at this order.

O(ǫ3): The solvability condition for F3 constrains the slow-time evolu-
tion of n1 and T1.

52 (Again, no constraint on Er is obtained.)
Then F3 is determined.53

O(ǫ4): The solvability condition for F4 constrains the slow-time evolu-
tion of n2 and T2. Only at this order does a constraint on Er ap-
pear, by taking the difference of the equations for ∂tni and ∂tne.
In other words, one deduces the form of the momentum equa-
tion at O(ǫ4). One does not need to explicitly calculate f4.

53

This calculation is systematic. It shows that the plasma is intrinsically ambipo-
lar through second order and that details of F3 must be determined. It provides
a very complete alternate way of demonstrating that third-order calculations are
required in a standard full-F treatment of gyrokinetic momentum conservation.

5.3 The gyrokinetic momentum conservation law of Scott
& Smirnov

The methodology of Parra and coworkers is complete in itself; the formalism
can be developed without explicit reference to Hamiltonians, Lagrangians, field
theory, Noether theorems, etc. However, there is ample evidence from many
fields of physics that such concepts can be greatly unifying, and they furthermore
cast a sufficiently different perspective (both physical and mathematical) on the
gyrokinetic formalism that it is nontrivial to establish the consistency between
the approaches. Thus we turn to a discussion of the Lagrangian field-theoretic
conservation law of Scott & Smirnov. One expects that ordering issues will arise
there as well, since the particle and the gyrocenter dynamics are connected by
the particle-to-gyrocenter transformation.

We have already quoted the form of their result in Eq. (92), and motivated it
with the approximate calculation in Sec. 4.2. But hidden in the derivation of the

52The true density is n = n0 + n1 + · · · . Usually Chapman–Enskog theory is developed
with multiple-scale perturbation theory. In that case there is sufficient freedom that one can
choose to carry all of the hydrodynamic quantities in the lowest-order distribution. That does
not happen in the particular method chosen by Parra & Calvo, who do not use multiple-
scale expansion. Of course, one must come to the same physical conclusions regardless of the
mathematical technique.

53The discussion here of the O(ǫ3) and O(ǫ4) calculations is not given in the paper by
Calvo & Parra (2012); it has been distilled from private discussions (2012) with those authors.
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final equation is a crucial cancellation (see footnote 51); without it, one would
have to work even harder, to O(ǫ4). To understand the origin of the cancellation,
we recall the formula for single-particle canonical momentum p = mv + qA/c.
For particle motion in axisymmetric fields, the covariant toroidal component
of p, pϕ

.
= p · eϕ is conserved according to standard Lagrangian mechanics. Be-

cause eϕ = Rϕ̂, pϕ is the toroidal component of canonical angular momentum.

For gyrocenters, the relevant canonical momentum is54 P = mU‖b̂+qA/c. Then

the toroidal component is obtained by dotting with eϕ and defining bϕ
.
= b̂ ·eϕ:

Pϕ = mU‖bϕ +
q

c
Aϕ = mU‖bϕ︸ ︷︷ ︸

O(1)

− q

c
ψ

︸︷︷︸
O(ǫ−1)

, (108)

where ψ is the poloidal flux. One readily establishes that the field term is one
order larger than the gyrocenter term. (That is, of course, the entire basis
for the gyrokinetic expansion.) But the gyrocenter conservation law describes
the evolution of the physical momentum of the gyrocenter, not the canonical
momentum. If raw factors of ψ were to remain in the final equation, as in, say,
Π ∼ ψQ for some quantity Q, a third-order contribution to Π could arise from a
fourth-order Q: ǫ3 = ǫ−1×ǫ4. Scott & Smirnov demonstrated that this does not
happpen by virtue of the quasineutrality condition. Thus, their final equation
contains no raw factors of ψ; this is one of their most important conclusions.55

In the equation of Scott & Smirnov, all of the fluxes are now determined
in terms of the gyrocenter Hamiltonian H , which has so far not been specified.
Scott & Smirnov concluded that a consistent treatment of angular momen-
tum conservation could be obtained by using a Hamiltonian that was accurate
through second order, i.e., H ≈ H0+ǫH1+ǫ

2H2. Due to the way the gyrokinetic
Poisson equation is constructed in the variational formalism of gyrokinetic field
theory (involving the functional derivative of H with respect to potential, which
is equivalent to implementing the pullback transformation), that means that the
associated Poisson equation would retain polarization effects through only first
order. That is the order of accuracy that is retained in most current codes, so
Scott & Smirnov concluded that those codes (perhaps with small modifications)
could be satisfactory from the point of view of the momentum issues.

54The use of P follows the work of Scott & Smirnov (2010) and Brizard & Tronko (2011),
but it disguises an important subtlety. The expression used here does not explicitly contain the
angular momentum associated with the magnetic drifts of the gyrocenter; although small, that
is a physical effect. Brizard (unpublished, 2013) has addressed this issue by reconsidering the
choice that has been conventionally made for the vector generating function (Sec. D.3.2) for the
guiding-center displacement. Beginning with the work of Littlejohn (1982), the perpendicular
part of that function has been set to zero for convenience. This implies a particular definition
of the gyrocenter position (and the other gyrocenter variables). However, other choices are
possible, and Brizard has demonstrated that a particular nonzero choice leads to expressions in
which the magnetic drifts appear explicitly in the momentum conservation law for gyrocenters.
The implications of this observation remain to be fully explicated at the time of writing.

55With the benefit of hindsight, it is obvious that this cancellation must happen because
an equation for the time evolution of physical momentum cannot contain a term involving a
raw vector potential. But that it indeed does happen is an important consistency check on
the manipulations.
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[For strict energetic consistency, use of H2 implies either that second-order
drifts should be included in the kinetic equation (most codes do not do that) or
that an energy-conserving partial linearization should be done along lines that
Scott & Smirnov have discussed (not all codes implement that).]

It is important to understand the meaning of ‘consistent.’ In the language
of Scott & Smirnov, a consistent treatment means that the formalism obeys
energy and momentum conservation laws (derived from the same Lagrangian).
However, just because a conservation law exists does not mean that the fluxes
in that law describe all of the relevant plasma physics or are calculated with
sufficient accuracy. With this observation in mind, we argue that the logic
of Scott & Smirnov regarding the adequacy of H2 is incomplete. A particular
difficulty relates to determining the size of the terms related to the perpendicular
Reynolds stress. We give an abbreviated discussion here, deferring more detailed
analysis to Appendix J.

Schematically,56 the form of the gyrokinetic momentum conservation law is
[see Eqs. (80) and (83) of Scott & Smirnov]

∂

∂t






toroidal projection of

gyrocenter parallel

angular momentum


+




toroidal projection of

the angular momentum of

the gyrocenter (effective)

E ×B drift







= − ∂

∂ψ
(Γ‖ + Γ⊥), (109)

where, as shown by Scott & Smirnov,

Γ‖ ∼
〈∫

dv FV ψvϕ

〉
, (110a)

Γ⊥ ∼
〈∫

dv F

(
∂H

∂E

)ψ
∂φ

∂ϕ

〉
+

(
similar

terms

)
, (110b)

and vϕ
.
= v‖bϕ is the toroidal projection of the parallel velocity of the gyrocenter.

As stated in the last section, V ψ is directly related to the Hamiltonian. To
intuitively understand the perpendicular term, which is the most subtle one in
the theory, note that

∂ϕφ ∼ Eϕ ∼ uψE , (111)

where uE is the E×B velocity. (In this discussion, signs, dimensional factors,
and some metric or geometric factors are dropped. The rigorous manipulations
with covariant and contravariant indices are spelled out in Appendix J.) Now
in the simplest case (cold-ion limit, constant B), H2 is quadratic in E⊥. [In
Appendix F, this ponderomotive effect is explained in terms of the conservation

56More generally, the second term on the left-hand side of Eq. (109) involves the radial
polarization. In detail, that includes pressure-related contributions that need not vanish when
the electric field vanishes.
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of the true magnetic moment µ, which is defined in the frame moving with the
E ×B velocity (thus ensuring Galilean invariance).] One then finds that

(
∂H2

∂E

)ψ
∼ Eψ ∼ uEϕ = O(ǫ). (112)

[The differentiation of Hn with respect to E = −∇φ, and other similar manip-
ulations involving higher-order gradients of φ, is equivalent to the calculation of
the (n−1)st term of the pullback transformation T∗.] Upon inserting Eqs. (112)
and (111) into Eq. (110b), one sees that the contribution from H2 to Γ⊥ is the
conventional perpendicular Reynolds stress:

Γ
[2]
⊥ ∼ (nm)i〈uEϕu

ψ
E〉 = O(ǫ2). (113)

The bracketed superscripts denote the order of H from which the term de-
rives, and the ordering estimate follows just from the raw sizes of the associated

flows. Similarly, there is an nth-order generalized Reynolds stress Γ
[n]
⊥ that

stems from Hn (or Tn−1).
The basic ordering argument is now the following. (We amplify here the dis-

cussion in Sec. 2.2.2.) Although Γ
[2]
⊥ is nominally one order larger than Γ

[3]
⊥ , in

the low-flow ordering (and assuming an up–down symmetric tokamak) the sta-

tistical correlation between uEϕ and uψE is very weak, making the net Reynolds
stress arising from H2 one order smaller. The Reynolds stress arising from H3 is
thus comparable and must be considered, unless for some reason (which has not
yet been found) that stress also experiences a near cancellation.57 It does not
appear that it is small due to a microscopic symmetry. It may be numerically
small in subsidiary orderings involving such things as small Bpol/Btor, or due
to particular properties of the underlying microturbulence.

Similar statements about the role of correlations apply to Γ‖, which also
has a second-order piece Γ‖,2. However, it is not hard to argue that Γ‖,2 stems
from H1 [F0 does not contribute for the same reasons as in Sec. 5.1.2, so the
effect involves the product of δF (

.
= F −F0) and H1], and similarly H2 produces

a third-order flux; thus H3 is negligible for Γ‖.

5.4 The Ordering Problem Restated

To try to be as clear as possible, we will restate and summarize the order-
ing problem here in a self-contained way, directly using the Scott & Smirnov
momentum conservation law to demonstrate it, and keeping track of all di-
mensional factors. Their conservation law is given here in Eqs. (92) and (93)
[those are equivalent to Eqs. (80) and (83) of Scott & Smirnov (2010), just with
slightly different notation]. We focus on the mean long-wavelength component
of the flux-surface-averaged toroidal rotation in the gyro-Bohm regime, which
evolves at the transport rate ∂/∂t ∼ DgB∇2

⊥ ∼ (cs/L)ρ
2/L2 ∼ ǫ2cs/L. [By

‘mean’ long-wavelength component, we mean the ensemble or time-averaged

57B. Scott (private communication, 2013) believes that such a cancellation exists.
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equilibrium-scale component. There are, of course, components of the toroidal
rotation with shorter radial wavelengths, related to zonal flows and geodesic
acoustic modes driven by turbulence, that fluctuate on shorter time scales, just
as there are zonal components of the flux-surface-averaged density and tem-
perature.] In the low-flow regime where the parallel flow U‖ ∼ ǫcs, and using
bϕ = Rϕ̂ ·B/B ∼ L (all equilibrium scales are represented as order L), the first
term in Eq. (92) is of the order

∂Pϕ‖
∂t

∼ ǫ2
cs
L
miniǫcsL ∼ ǫ3niTe. (114)

The troublesome term in Eq. (92) is the last one, which is related to the radial
flux of the toroidal component of the E × B momentum. Upon using ∂ϕφ ∼
k⊥Lφ and (∂H/∂E)ψ = (∂H/∂E) ·∇ψ, with ∇ψ ∼ ψ/L, one finds that the last
term in Eq. (92) is of the order

∂

∂ψ

∑

s

Ns

〈∫

P

F

(
∂H

∂E

)ψ
∂φ

∂ϕ

〉
∼ 1

ψ
ni

H

k⊥φ

ψ

L
k⊥Lφ ∼ niH. (115)

Thus balancing this with the first term means that one needs to keep the third-
order Hamiltonian, H3 ∼ ǫ3T , in order to keep all effects that can contribute
to the momentum flux in the low-flow gyro-Bohm ordering. This is the same
result found from the previous quasineutrality order-of-magnitude argument,
Sec. 5.1.2, and it brings one back to the original concern of Parra & Catto.

One might have thought that the momentum flux from H2 would be even
bigger than the momentum flux from H3, so that one would not need to worry
about H3. But as we have discussed elsewhere (see for example Sec. 2.2.2
and Appendix K), the momentum flux from H2 almost averages to zero due
to symmetry properties, so the correlation between the radial and binormal
components of the E ×B velocity is almost zero, with only a weak correlation
that introduces another factor of ǫ, so the net contribution to the last term
in Eq. (92) from H2 turns out to also be of order ǫ3niTe, as it should be if a
low-flow gyro-Bohm ordering holds.

Similarly, it is conceivable that the nominally third-order fluxes stemming
from H3 are also in fact of higher order. However, it does not appear that one
can argue those away by using symmetry considerations; some other mecha-
nism must be invoked. For the special case of slab geometry, an unpublished
calculation of Krommes (2011; see Sec. J.2.2) suggests that in the cold-ion limit
(i.e., no FLR effects) the nominally third-order Reynolds stresses are in fact of
fourth order and hence negligible; that result has been verified by Parra & Calvo
(private communication, 2011). However, for the realistic case of k⊥ρi ∼ O(1),
it has not been possible to argue that those terms are negligible, so in general
it is necessary to include them (or to use the alternative formulation of Parra
& Catto that does not need them) unless proven otherwise.
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5.5 Answers to the Charge

With the previous discussion, one can address the questions posed to the Study
Group. The answers were summarized in Sec. 1.4; we repeat them here for
convenience, in some cases with some embellishment.

In addition to the questions identified in the Charge, a more basic question
must be answered first:

[0] Are the physics contents of the particle and the gyrocenter conserva-
tion laws equivalent or different?

The physics contents are equivalent. The mathematical representations
differ. The connection is given by the pullback transformation f = T∗F .

With question [0] answered, a major source of uncertainty is removed and
one can focus on the original questions:

[1] Are the gyrokinetic equations used in existing codes (including GTS,
GYRO, and GTC) adequate to simulate the evolution of turbulence over
transport time scales?

No existing gyrokinetic code contains all of the terms that are required
for completely consistent simulations of momentum transport in the low-
flow gyro-Bohm regime on transport time scales. However, efforts in that
direction are being made in the context of coupling turbulence-time-scale
gyrokinetic simulations with long-time transport solvers.

It should be noted that most present codes are adequate (perhaps with
some extension to fully incorporate second-order Hamiltonian effects into
the fluxes) to study turbulent momentum fluxes on the shorter turbulence
time scale in the high-flow regime, such as if there is strong beam injection.
Present codes are also adequate to study the particle and heat fluxes on
the shorter turbulence time scale. The equilibrium-scale toroidal rotation
in the low-flow, gyro-Bohm regime appears to be too weak to affect the
turbulence level, but even these small levels of flow may be important for
the MHD stability of resistive wall modes, and it is of general interest to
understand the higher-order terms that may contribute to residual stress
in this regime.

An important area of current research is developing codes to handle tur-
bulence in the edge/pedestal region, where eddy sizes might not be much
smaller than local gradient scale lengths and effects like ion orbit loss to
the wall may be important so that a low-flow gyro-Bohm ordering might
not hold locally. In such cases it might be sufficient to use a second-order
Hamiltonian.

[2] Are second- and/or third-order corrections in the normalized Larmor
radius required for (a) the gyrokinetic equation; (b) the gyrokinetic
Maxwell equations?

In principle, under a particular set of assumptions relevant to a specific
physics regime (see Sec. 2.1), third-order corrections are required for the
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gyrokinetic equation with a global full-F approach, while second-order
corrections are necessary in the gyrokinetic Maxwell equations. If a fluid
momentum equation is adjoined to the gyrokinetic equation, it is possible
to work to just second order in the kinetic equation (by using a moment
method described by Parra & Catto).

[3] If the answer to [2] is positive, is the vorticity equation proposed by
Parra & Catto a possible fix to extend the validity of gyrokinetic codes
to long time scales?

Yes. This must be implemented carefully. Scott (private communication,
2012) has emphasized that whereas the momentum conservation law based
on the gyrokinetic equation is firm and clean since it is derived variation-
ally, the conservation properties of a coupled system of gyrokinetic and
fluid system may be subtle and certainly need to be demonstrated.

[4] If second-order gyrokinetics is sufficient, what needs to be done to fully
implement this into codes with sufficient numerical accuracy, either
directly or through separate gyrokinetic transport equations for the
long time scale?

Second-order gyrokinetics should be sufficient if it is coupled directly to
a momentum transport equation, or if one is in a parameter regime that
relaxes the low-flow gyro-Bohm ordering. Second-order effects could be
added in principle to existing codes (along with adding the momentum
equation). The polarization term in the gyrokinetic Poisson equation
should be calculated in a particular way to be consistent. Calculating
the effects of small second-order drifts accurately when they are combined
with larger first-order drifts in the same equation may require higher nu-
merical accuracy than is typical at present. Analysis of the accuracy
requirements for the several types of gyrokinetic codes (which use vari-
ous PIC and continuum discretization and time-integration methods that
possess various conservation properties) should be carried out. The accu-
racy requirements might be more manageable near the plasma edge where
the local ǫ

.
= ρ/L (the ratio of the gyroradius ρ to the local gradient

scale length L) is not as small and there is less separation between the
turbulence and profile time-evolution scales.

6 Discussion

6.1 Outstanding questions

• If fluxes related to H3 are important, what do they mean? This ques-
tion is still not fully resolved. Parra hypothesizes that they are related
to residual stress and intrinsic rotation. This is, of course, another area
of intense current interest. Extant calculations of residual stress are dif-
ficult and controversial in their own right. A thorough analysis of those
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calculations and an understanding of their relation, if any, to the confus-
ing third-order fluxes is beyond the immediate scope of the present Study
Group. It is, however, a very interesting area for future research.

At least part of the significance of the H3-related contributions to mo-
mentum flux relates to the fact that the gyrocenter velocity is not exactly
the laboratory flow velocity because of nonlinear and FLR corrections.
To make contact with laboratory diagnostics, one must ultimately decom-
pose the natural gyrocenter momentum fluxes into, say, diffusive, pinch,
and residual stress terms expressed in terms of laboratory quantities. The
subtleties involved with such decomposition in the presence of all nonlin-
earities are not yet understood and are not likely to be for some time.

• What are the implications for the fidelity of current codes? In gen-
eral, one can designate a truncation of the gyrokinetic–Maxwell system as
(n,m), where n refers to the highest order of the drifts that are retained
in the gyrokinetic equation and m refers to the highest order of the (po-
larization) terms retained in the gyrokinetic Poisson equation. The basic
truncation that is implied by the variational principle is (n, n−1) because
the gyrokinetic Poisson equation is obtained by the functional derivative
of the Hamiltonian with respect to potential, which lowers the order by
one. Thus if H3 is important, nontrivial second-order terms must be
included in the polarization contribution to the gyrokinetic Poisson equa-
tion. To ensure the most straightforward form of energetic consistency,
third-order drifts stemming from H3 would have to be included in the
gyrokinetic equation, i.e., one would have a (3, 2) truncation. Implement-
ing the third-order drifts appears to be daunting. One may speculate
whether simplifications are possible. For example, Scott & Smirnov have
shown how to back-construct an effective Lagrangian that provides an en-
ergetically consistent (1, 1) closure58 (used by many of the extant codes).
Related techniques may be useful at higher order.

• What issues remain in developing the hybrid approach?

Parra & Catto (2008) advocate an alternate approach in which the real-
space momentum conservation law is used directly to determine toroidal
flows. A second moment may be taken that relates the required stress
tensor to a third moment that can then be evaluated from the solution
of the gyrokinetic equation. This is a well-known trick in neoclassical
theory that reduces the required order of accuracy by one power of the
expansion parameter. A related trick is used in the standard derivation of
drift-kinetic MHD (Kulsrud, 1964, 1983). By explicitly using a momentum
conservation law (closed by calculating the pressure tensor from moments
of the solution of the drift kinetic equation), one only needs to include
the lowest-order E×B drift (of order cs in the high-flow MHD ordering)

58Dubin et al. (1983) were the first to identy the energy constant associated with the (1, 1)
closure.
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in the drift-kinetic equation. The higher-order ∇B and curvature drifts
are neglected in that drift-kinetic equation, even though they would be
necessary if one were going to try to calculate currents (and resulting j×B
forces) directly from particle drifts, since j ∼ (c/B)∇p ∼ (ρs/L)encs.

GS2 and GYRO (and GENE, though we focus on the first two here) already
do something similar to the real-space approach. Those codes use a lo-
cal δF formulation instead of a global full-F one. (GYRO and GENE can
also operate with finite-radial-width simulation domains, which capture
some global effects like turbulence spreading.) The long-time evolution
of the equilibrium-scale particle-, momentum-, and energy-density pro-
files are then determined by transport equations that are of one order
higher than that of the physics incorporated in the δF evolution. A
systematic derivation of those equations was presented in an important
paper by Sugama & Horton (1998), and a comprehensive discussion has
recently been given by Abel et al. (2013). As the GYRO and GS2 teams
have emphasized, their present equations are valid for an intermediate-
flow ordering, 1 ≫ M ≫ ǫ, where terms of order M .

= uϕ/cs are retained
but terms of order M2 are neglected, and it is acknowledged that not
all of the terms required for the low-flow ordering, M ∼ ǫ, are yet in-
cluded. Parra is working with M. Barnes to perturbatively calculate the
second-order terms required for the low-flow ordering [for recent results,
see Barnes et al. (2013)]. (Here second order refers to the order to which
the pullback transformation T∗ must be calculated in order to relate the
gyrocenter and particle phase spaces. As discussed in the previous para-
graph, that is equivalent to saying that H3 is important.)

Similarly to these δF codes, most full-F codes could use their present
formulation to study momentum fluxes in the high- or intermediate-flow
regimes on the turbulence time scales (short compared to the transport
time scale so profiles do not evolve significantly). This can be used to
study diffusive and pinch contributions to the momentum flux. The issue
of an ‘intrinsic’ momentum flux (separate from pinch or diffusive terms)
is more subtle, as according to recent papers by Sugama et al. (2011)
and Parra et al. (2011b) it can be shown that the intrinsic momentum
flux should vanish in high- or intermediate-flow regimes in an up–down
symmetric tokamak in the gyro-Bohm regime. The implication is that
any intrinsic momentum flux that arises from profile variations in a global
code should get weak when extrapolating to smaller ρ∗ in the gyro-Bohm
regime.

• How do collisions modify the considerations? In collisionless theory,
equilibrium distributions must be constructed from the constants of mo-
tion (for example, the magnetic moment µ). The modern gyrokinetic
formalism is ideally suited to construct and work with those constants of
motion. Unfortunately, a workable extension of the Lagrangian methods
to include collisions in the Lagrangian itself is not yet at hand. However,
there are various ways that collisions have been incorporated in gyrokinetic
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codes, indicating that it is possible to treat collisions (thus neoclassical ef-
fects) and turbulence on equal footing. [See, for example, the recent work
of Calvo & Parra (2012).]

• What is the impact of numerical errors? Is there a best way to formulate
gyrokinetic algorithms in order to minimize numerical errors, particularly
in view of the presence of small but physically important terms?

• Are other ordering regimes of importance? What is the impact of flows
in the low-flow gyro-Bohm ordering? Are there subsidiary orderings (like
large aspect ratio or expansions in weak poloidal field) that can usefully
simplify the equations in various parameter regimes?

In the standard low-flow gyro-Bohm regime, flows are too weak by them-
selves to affect energy or particle transport, since the resulting shear-
ing rate ∇uE ∼ ǫcs/L is small compared to the drift-wave growth rates
∼ cs/L. This point is also made in the conclusions of Sugama et al. (2011).
[Perhaps further thought should be given to modes at longer wavelengths
and/or very close to marginal stability where the growth rates are small
compared to cs/L, but those would be in a different ordering regime.] How-
ever, those flows might serve as triggers or boundary conditions for other
mechanisms, so perhaps further study is needed, particularly in interme-
diate regimes such as near a transition between gyro-Bohm and Bohm
scaling. Furthermore, even such small flows might be important for MHD
stability because of the importance of mode locking and resistive wall ef-
fects. Also, it is of general interest to understand the effects of H3 because
that is the only way to obtain a residual stress in the low-flow gyro-Bohm
regime that could drive intrinsic rotation (other than edge effects).

It is possible that transport barriers or the edge region might be in a
Bohm regime because the eddy sizes are not much smaller than the local
steep gradient scales and because of effects like ion orbit losses to the wall.
In this case it might be sufficient for edge gyrokinetic codes to only keep
second-order Hamiltonian effects. Most existing gyrokinetic codes use
only a first-order Hamiltonian or approximate second-order effects, but
they could be extended. One of the outcomes of the study of momentum
transport stimulated by the Parra & Catto work is a better appreciation
of the high accuracy requirements. Before that, the need for second-order
terms even in the Bohm regime was not appreciated. Future work that
studies residual stress or general momentum transport should be careful to
study the scaling of the observed rotation and momentum fluxes in order
to understand whether all of the terms of the relevant order are being kept
and how the rotation will scale to larger machines.

Existing core gyrokinetic codes (perhaps with extensions to handle second-
order Hamiltonian effects) can also be used to study momentum transport
in a high- or intermediate-flow regime, such as can occur with beam in-
jection. While beam-driven rotation gets weaker in larger reactor-scale
machines, there are some recent indications (Staebler & St. John, 2006;
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Budny, 2009) that beam-driven rotation might still have a significantly
favorable effect in ITER. It would be interesting to investigate this possi-
bility further.

• What are the consequences of asymmetry? The main discussion has
been conducted in the context of axisymmetric tokamaks. In this case,
the turbulent transport is intrinsically ambipolar through second order, so
it is natural that third-order effects must be considered. In the presence of
asymmetry, this conclusion does not hold, as emphasized by Sugama et al.
(2011). He concluded that further research is necessary to properly un-
derstand the interaction between small amounts of asymmetry and the
higher-order effects.

6.2 Some history

To be fair, we should relate some of the history and acknowledge a contribution
of one of us to the confusion on this topic. In the early summer of 2010, B. Scott
gave a talk at PPPL presenting an early version of a momentum conservation
law in which the vector potential A for the background field B appeared explic-
itly, without a gradient operating on it. Because A is large, O(ǫ−1) relative to
the kinetic term in the canonical momentum, the presence of such a term would
have increased the accuracy requirements by one power of ǫ, as we explained
in Sec. 5.3. Although one of us (GWH) demonstrated that there were ordering
problems with that equation, he did not at that time give a complete descrip-
tion of the ordering arguments that Parra & Catto have made. Scott’s later
momentum-conservation equation solved the problem of a ‘bare’ A by identify-
ing an important cancellation resulting from the quasineutrality constraint. His
equation is important in that it provides a proof of the existence of momentum
conservation in Hamiltonian gyrokinetics in the absence of ordering assump-
tions. However, as we have seen, it does not avoid the fundamental ordering
problems that Parra & Catto have been pointing out.

6.3 Summary

In summary, Parra & Catto have pointed the community to an extremely sub-
tle and difficult issue, namely the proper treatment of the transport of toroidal
angular momentum in an axisymmetric torus. As Parra, Catto, Sugama, and
Calvo have shown in multiple publications, an axisymmetric tokamak is am-
bipolar through O(ǫ2). That implies that in a full-F simulation of a low-flow
gyro-Bohm regime that relies only on the gyrokinetic Poisson equation for the
potential, one must retain terms of third order in the gyrokinetic equation and
of second order in the gyrokinetic Poisson equation. A hybrid scheme in which
the fluid momentum equation is adjoined to the gyrokinetic simulation appears
to be fruitful; in that case, it is possible to work to just second order in the
kinetic equation.
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The flows in the standard low-flow gyro-Bohm regime are too weak by them-
selves to affect energy or particle transport, though they might be important
for MHD stability. There are other parameter regimes that are also of interest,
such as near transport barriers or the edge where local gyro-Bohm assumptions
might break down and flows can have a stronger impact on turbulence; there
it would be sufficient in a direct approach to retain second-order terms in the
gyrokinetic equation and first-order terms in the gyrokinetic Poisson equation.

Progress with this topic requires a deep understanding of the interpretation
of the gyrokinetic formalism. Some difficult issues have been resolved; others
remain. The original concerns involving ordering and truncations have led to
other important questions regarding the physics of residual stress and intrinsic
rotation. The subject is sufficiently complex and multifaceted that a compre-
hensive understanding will be achieved only over a period of years, not months.
The field continues to evolve; an overview by Peeters et al. (2011) summarized
the status as of a few years ago, and we noted in Sec. 1 recent and ongoing
unpublished research by various authors.

Finally, it is worth emphasizing that none of the conclusions of this report
imply a wholesale indictment of existing gyrokinetic codes. Those have been
and will continue to be very productive for the elucidation of diverse basic
physics phenomena, quantitative validation tests with experimental data, and
simulations of future machine designs. Some upgrades may be necessary in order
to deal with particular issues relating to momentum transport, but that is the
nature of an ongoing research program. Should a question regarding continuing
funding of gyrokinetic simulations arise, the answer is that they deserve more
support — certainly not less.
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A Generalized coordinates

Most of the following formulas are taken directly from D’haeseleer et al. (1991).
Additional, more advanced material from differential geometry can be found in
Fecko (2006).

59“Since God had commanded it, it was necessary that I do it. Since God commanded it,
even if I had a hundred fathers and mothers, even if I had been a King’s daughter, I would
have gone nevertheless.” — Joan of Arc
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We use generalized coordinates zi and assume that we are given a transfor-
mation to the Cartesian coordinate system x(z). We begin by using physicists’
notation, e.g., boldfaced vectors that have space-dependent coefficients. How-
ever, in Sec. A.6 we introduce the more compact notation of differential geome-
try in which one speaks of vector and covector fields, which are represented by
first-order differential operators.

A.1 Basis vectors

Vectors V are represented as

V = V iei (raised index ≡ contravariant coordinates), (A1)

where the summation convention for repeated indices is used and the basis
vectors are

ei
.
=
∂x

∂zi
≡ ∂ix. (A2)

Note that these are not necessarily normalized; their length is given by the scale
factors (useful mostly for orthogonal coordinate systems) hi

.
= |ei|. One may

visualize the components of a vector as the elements of a column vector.
Covectors α are represented as

α = αie
i (lowered index ≡ covariant coordinates), (A3)

where the cobasis vectors (sometimes called reciprocal or dual basis vectors) are

ei
.
= ∇zi. (A4)

One may visualize the components of a covector as the elements of a row vector.
The basis and cobasis vectors are orthonormal: ei · ej = δij . In three dimen-

sions, one has

ei =
ej × ek

ei · (ej × ek)
(A5)

and analogously with the subscripts and superscripts reversed. Here (i, j, k) is
a cylic permutation.

Strictly speaking, it is not legitimate to form the scalar product of two
vectors; one should use one covector and one vector. Thus

α · V = αiV
i. (A6)

A.2 Metric coefficients

Vectors and covectors can be defined on general manifolds that possess no con-
cept of distance. When distance is defined, one has a Riemannian manifold and
a metric tensor g. The fully covariant metric coefficients are defined by

gij
.
= ei · ej . (A7)
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The square of the length element is

(dl)2 = gijdz
i dzj. (A8)

Also,
ei = gije

j , (A9)

Furthermore, one can introduce the fully contravariant metric coefficients as the
inverse of gij :

gikgkj = δij . (A10)

Those can be used to raise and lower indices according to

V i = gijVj , Vi = gijV
j . (A11)

A.3 The Jacobian

The Jacobian J is defined by

dx = dz1 dz2 dz3 J, (A12)

or

J
.
=
∂(x)

∂(z)
. (A13)

One has

J = e1 · (e2 × e3), (A14a)

J−1 = e1 · (e2 × e3). (A14b)

Thus, Eq. (A5) becomes

ei = J(ej × ek) (indices and J upstairs), (A15a)

ei =
1

J
(ej × ek) (indices and J downstairs). (A15b)

With g
.
= det[gij ], one also has

J =
√
g. (A16)

In an orthogonal coordinate system, J = h1h2h3.

A.4 Dot and cross products

The scalar product is
A ·B = AiBi. (A17)

The cross product can be represented as

(A×B)i = JǫijkA
jBk, (A18a)

(A×B)i =
1

J
ǫijkAjBk; (A18b)
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the last expression can be written as the determinant

A×B =
1

J

∣∣∣∣∣∣

e1 e2 e3
A1 A2 A3

B1 B2 B3

∣∣∣∣∣∣
. (A19)

As a simple generalization, the dot product of a covector and a vector cross
product can be represented as the determinant

α · (A×B) = αi(A×B)i =
1

J

∣∣∣∣∣∣

α1 α2 α3

A1 A2 A3

B1 B2 B3

∣∣∣∣∣∣
. (A20)

A.5 Gradient, curl, and divergence

The gradient is naturally a covector (operator):

∇ = ei∂i; (A21)

for example, (∇f)i = ∂if .
The contravariant components of the curl are [cf. Eq. (A18b)]

(∇×A)i = J−1ǫijk∂jAk (A22a)

≡ J−1(Ak,j −Aj,k), (A22b)

which can be represented as the determinant

∇×A =
1

J

∣∣∣∣∣∣

e1 e2 e3
∂1 ∂2 ∂3
A1 A2 A3

∣∣∣∣∣∣
. (A23)

The divergence of a vector is

∇ ·A = J−1∂i(JA
i). (A24)

The formula for the divergence of a vector is a special case of the covari-
ant gradient ∇ of an arbitrary tensor field. That is defined in terms of the
coefficients of linear connection defined by

∇aeb = Γcbaec. (A25)

When the ea’s are a coordinate basis ei, as was assumed above [see Eq. (A2)],
then the Γkji’s are called the Christoffel symbols of the second kind, and the
covariant derivative in the direction m ≡ em is realized by ∂m. For a general
tensor T → T i...jk...l , one has

(∇T)i...jk...lm = (∇mT)i...jk...l ≡ T i...jk...l;m, (A26)

where

T i...j...kl...m...n;r
.
= T i...j...kl...m...n,r + · · ·+ ΓjsrT

i...s...k
l...m...n + · · · − · · · − ΓsmrT

i...j...k
l...s...n . (A27)
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The divergence of a tensor is then defined as the contraction

(∇ · T)i...j...l...m... = T i...j...kl...m...;k. (A28)

As a specific example, consider the contravariant component of the divergence
of a second-rank mixed tensor T il . The covariant gradient is

(∇T)ilr = T il,r + ΓisrT
s
l − ΓslrT

i
s (A29)

and the divergence is

(∇ · T)l = T kl,k + ΓkskT
s
l − ΓslkT

k
s . (A30)

The first two terms can be recognized as the divergence of the vector τl
.
= T kl

for fixed l, so the formula reads

(∇ · T)l = ∇ · τl − (∂kel)
sT ks . (A31)

This follows also from the prosaic manipulation

el · (∇ · T) = ∇ · (el · T)− (∇el) : T, (A32)

which is spelled out in more detail in Eq. (49).

A.6 Vector fields

A vector field is a generalization to arbitrary differentiable manifolds of the
familiar tangent vector. It provides a way of smoothly assigning one vector to
each point of the manifold. In differential geometry, instead of writing V = V iei
with ei

.
= ∂ix, one introduces the vector field V as the operator

V = V i(z)∂i; (A33)

thus a vector field is a first-order differential operator with nonconstant coef-
ficients. The special vector fields ∂i are called the coordinate basis (for vector
fields). In this notation, the directional derivative of a function in the direction
of V is represented concisely as V f ≡ V i∂if .

A covector field or differential 1-form (see Appendix C) is written as

α = αi(z)dz
i. (A34)

The dzi’s are a coordinate basis for covectors, dual to the ∂i’s.
The gradient operation leads to a natural covector field. The gradient

(field) df of a function f is a covector field whose components are ∂if , i.e.,

df = (∂if)dz
i. (A35)

Further discussion of the gradient is given in Sec. C.1.1.
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B Magnetic fields

B.1 Representation of magnetic fields

For a field with nested flux surfaces (guaranteed by toroidal axisymmetry), we
use the flux coordinates z = (ψ, θ, ϕ). It is frequently convenient to use the
mixed representation

B = I(ψ)∇ϕ+∇ϕ×∇ψ, (B1)

or
B = Ieϕ + J−1eθ. (B2)

It follows from Eq. (B2) that

Bθ = J−1, Bϕ = I. (B3)

B.2 Magnetic field lines

The equation of a magnetic field line is

B × dx = 0 or B = c dx, (B4)

where c is a constant. This becomes

B

dl
=
B1

dz1
=
B2

dz2
=
B3

dz3
. (B5)

Here, by definition of contravariant component, Bi = B ·∇zi = B · ei. In an
axisymmetric torus, one has Bψ = 0 (since eψ · eϕ = 0).

B.3 Flux-surface average

In this section flux surfaces will be denoted by the generalized coordinate ρ (for
tokamak applications, frequently the poloidal flux ψ ≡ 1

2πψpol; for stellarator
work, frequently the toroidal flux ψtor). From D’haeseleer et al. (1991, p. 85),

The flux surface average of a function Φ(x) is defined by the volume
average over an infinitesimally small shell with volume ∆V , where
∆V lies between two neighboring flux surfaces with volumes V and
V +∆V . It is denoted by 〈Φ(x)〉, and is equal to

〈Φ(x)〉 = lim
∆V→0

1

∆V

∫
Φ d3R. (B6)

One has

〈Φ〉 = 1

V ′(ρ)

∫

S

Φ
dS

|∇ρ| , (B7)

where V ′ .= dV/dρ. Because in a toroidal coordinate system z = (ρ, θ, ζ), one
has dS = J |∇ρ| dθ dζ and

〈Φ〉 = 1

V ′

∫ 2π

0

dθ dζ JΦ. (B8)
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This implies (using Φ = 1) that

V ′ =

∫ 2π

0

dθ dζ J (B9)

and that

〈Φ〉 =
∫ 2π

0
dθ dζ JΦ

∫ 2π

0 dθ dζ J
. (B10)

It immediately follows that (for toroidal systems)

〈∇ ·A〉 = 1

V ′

∂

∂ρ
(V ′〈Aρ〉) (toroidal). (B11)

If B has good flux surfaces (guaranteed for an axisymmetric system), then

〈B ·∇Φ〉 = 〈∇ · (BΦ〉 = 0 (good surfaces), (B12)

since in that situation Bρ = 0.

C Differential forms

One of the tools of modern mathematics that has found increasing applica-
tions to physics, including plasma physics, is the method of differential forms.
That method is not ‘new’ to physics in any sense; see, for example, the lengthy
paper of Misner & Wheeler (1957), now more than a half-century old. (Car-
tan’s research on differential forms dates back to at least 1889.) However, it
is becoming increasingly more appreciated and practically useful. The beauti-
fully pedagogical textbook Gravitation by Misner et al. (1973) uses differential
forms in a fundamental way to provide both mathematical conciseness and a
deep physical picture of the geometry of space-time. In plasma physics, ‘mod-
ern’ (& 198860) derivations of the nonlinear gyrokinetic equation frequently
employ differential forms, as do modern perturbation techniques based on non-
canonical coordinates (the latter being employed in the former). Here we give a
brief sketch of the essential ideas, providing only enough detail to support the
later discussion of noncanonical perturbation theory in Appendix E. For fur-
ther information, see the readable (yet nontrivial) book by Flanders (1963); the
textbook of Misner et al. (1973); Appendix A of the important paper on non-
canonical perturbation theory by Cary & Littlejohn (1983); and any textbook
on differential geometry, such as the one by Fecko (2006).

C.1 Definition of differential form

Loosely speaking,61 a differential form is the quantity that occurs under the
integral sign of a line integral, surface integral, volume integral, etc. Thus, in

60This year is the publication date of the paper by Hahm (1988).
61In this section, we sacrifice some mathematical precision in favor of intuition; the discus-

sion is intended for newcomers to the field. For example, it is really measures that appear
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the integral I1
.
=
∫
f(x)dx, the quantity f(x)dx is a differential 1-form. In

I2
.
=
∫ ∫

f(x, y)dx dy, the quantity f(x, y)dx dy is a differential 2-form. One
of the reasons that a systematic formalism for differential p-forms is useful is
that it provides elegant and efficient proofs of powerful theorems of integration,
such as Stokes’ Theorem and Gauss’s Law. Electromagnetism is also neatly
represented in terms of differential forms.

One of the tricky issues with integration in higher dimensions, say over a 2D
surface, relates to orientation. That is, in vector calculus line or surface elements
are usually considered to be vectors, e.g., dl or dS. The systematic theory of
differential forms handles that issue by introducing basis 1-forms ωµ ≡ dzµ

(note the boldfaced font for d), which endow the basic differentials with some
orientation; and the exterior product or wedge product ∧, which enables one to
create higher-order forms from lower-order ones in a useful way. For example,
dx ∧ dy is an area element oriented in the z direction.

While the use of a bold font for the basis 1-forms may prevent some confusion
with the differentials of ordinary calculus, a consistent notation would make
essentially everything in sight bold. It is common to drop the bold, and we
shall do so from now on.

C.1.1 1-forms

According to Misner et al. (1973), “a 1-form is a linear, real-valued function of
vectors; i.e., a linear machine that takes in a vector and puts out a number.”
In their notation, that output is denoted by 〈α, v〉, where α is the 1-form (with
components αµ) and v is the vector (with components vµ) on which the 1-form
acts. Specifically, 〈α, v〉 = αµv

µ. Another common notation is 〈α, v〉 ≡ α(v).
A general differential 1-form α is just a linear superposition of basis 1-forms:

α = αµ(z)dz
µ. Although the components αµ of the 1-form α can often62 be

interpreted as the covariant components of a vector, modern notation prefers to
call αµ a covector.

An important example of a differential 1-form is the energy-momentum form
p = −E dt+ pxdx+ pydy+ pzdz. A closely related object, the Poincaré–Cartan
differential 1-form, is encountered in noncanonical Hamiltonian mechanics; see
Appendix E.

Ordinary functions are 0-forms. The gradient or differential df of a 0-form f
is the 1-form

df = ∂µf dz
µ. (C1)

In ordinary calculus, one would write this as df = dx · ∇f ; i.e., df is the
directional derivative of f in the dx direction. Specifically, df is the change in f
over a short distance dx. The point is that the 1-form df contains information
about the (linear-order) behavior of f in all possible directions relative to some

under integral signs, and the transformation properties of measures and differential forms dif-
fer by the presence or absence of an absolute value. Also, the second paragraph of the section
does not adequately distinguish between global orientation and the local properties of basis
1-forms.

62(when a metric tensor exists)
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particular point. Suppose one wants to know how f changes over an infinitesimal
distance ∆s in the ŷ direction. To answer that, one constructs the vector (field)
v = ∆s ∂y and runs it through the 1-form df , obtaining

〈df, v〉 = 〈df,∆s ∂y〉 = ∆s ŷ ·∇f. (C2)

C.1.2 p-forms

A p-form is (or has as components) a completely antisymmetric tensor of rank63(
0
p

)
. For example,

α =
1

p!
αµ1µ2...µp

dzµ1 ∧ dzµ2 ∧ · · · ∧ dzµp . (C3)

Here ∧ denotes the exterior product, which is defined as follows. Given an n-
dimensional linear space and p-forms α(p) and β(q) in that space, then α(p)∧β(q)

is a (p + q)-form. The ∧ behaves like an ordinary multiplication sign (it is
distributive and associative) except for the commutation law

α(p) ∧ β(q) = (−1)pqβ(q) ∧ α(p). (C4)

For two 1-forms α = αµdz
µ and β = βνdz

ν , some consequences of Eq. (C4) are

α ∧ β = −β ∧ α, (C5a)

α ∧ α = 0, (C5b)

α ∧ β = αµβνdz
µ ∧ dzν =

1

2
(αµβν − βµαν)dz

µ ∧ dzν . (C5c)

C.2 Interior product

A p-form can be thought of as a multi-linear machine that accepts p vectors and
returns a number. The interior product of a vector field X with a p-form α is
written as iXα; it is a (p− 1)-form defined by

(iXα)(X1, . . . , Xp−1) = α(X,X1, . . . , Xp−1), (C6)

i.e., the vector is just inserted into the first slot of the p-form. The components
of iXα are Xkαk i1 i2 ...ip−1

.

C.3 Exterior derivative

The exterior derivative d turns a p-form into a (p+1)-form by using the definition
of df (p = 0) plus the rules

d(α + β) = dα+ dβ, (C7a)

d(α(p) ∧ β(q)) = dα(p) ∧ β(q) + (−1)pα(p) ∧ dβ(q), (C7b)

d(dα) = 0. (C7c)

63The upper index refers to the number of contravariant (vector) indices; the lower index
refers to the number of covariant (covector) indices.
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For example, suppose one has the 1-form γ = γµdz
µ. Then dγ is a 2-form:

dγ = dγµ ∧ dzµ =
∂γµ
∂zν

dzν ∧ dzµ =
∂γν
∂zµ

dzµ ∧ dzν =
1

2
ωµνdz

µ ∧ dzν , (C8)

where the components of the 2-form are

ωµν
.
=
∂γν
∂zµ

− ∂γµ
∂zν

≡ ∂µγν − ∂νγµ. (C9)

A differential 2-form plays a central role in the study of noncanonical Hamilto-
nian mechanics; see Appendix E.

A form α is said to be closed if dα = 0.

D Pullback transformations

The fundamental connection between the particle and the gyrocenter phase
spaces is the pullback transformation. A proper exposition of the concepts
underlying the notion of a pullback would require writing the first few chapters
of a book on differential geometry, but that has already been done; one enjoyable
example aimed at physicists is by Fecko (2006). Thus the following discussion
will be brief, incomplete, and informal. For applications to gyrokinetics, an
important paper is by Qin & Tang (2004). The basic ideas relating to variable
and function transformations outlined below are covered in an old but still useful
review by Cary (1981) (who did not use the modern language of differential
geometry).

Let us refer to the particle phase space as the manifold M (coordinates z)
and the gyrocenter phase space as the manifold M (coordinates z). Assume
that one is given the transformation z = ϕ(z), or in operator notation z = Tz.
ϕ is a nonlinear map from M to M (Fig. 3).

D.1 Pullback transformation on functions

On M, consider a scalar function f(z). The value of that scalar is independent
of the choice of variables. Thus, one has f(z) = f(z) for some function f of the
gyrocenter variables. This implies

f(z) = f(ϕ(z))
.
= (ϕ∗(f))(z), (D1)

which defines the pullback map ϕ∗ on functions. The corresponding operator
representation is cleaner:

f(z) = f(Tz)
.
= (T∗f)(z), (D2)

or, since both sides are evaluated at the same arbitrary point,

f = T∗f. (D3)

75



real line

T

M M

T

FF

*

z z

Figure 3: Illustration of the pullback T∗ of the gyrokinetic distribution function F
from gyrocenter phase space M to the particle phase space M. The transformation T
takes points z in M to points z in M: z = Tz. The scalar function F (z) on M has the
same value as the function F (z) evaluated on the transformed point. The functions
are related by the pullback transformation: F = T∗F .

T∗ (which acts here on functions) is called the pullback transformation induced
by the transformation T (which acts on points in M). More generally, T∗ acts
on p-forms. (A function is a 0-form.) Typically Lie transforms (Sec. D.3.2) are

used to construct T perturbatively. To go in the other direction, f = T
∗
f , one

can use the inverse function: T
∗
= (T∗)−1 = (T−1)∗.

D.2 Pushforward of vectors

Note that although T transforms z to z, it is not called a ‘pushforward’ operator;
rather, it is said to induce the pullback transformation T∗. (One must take care,
as some early plasma literature is not consistent on this point.) The pushforward
operator T∗ and the corresponding map ϕ∗ transform vectors on the tangent
space of M to their corresponding representation in the tangent space of M.64

Vectors are associated with infinitesimal displacements, so consider

z +∆z = ϕ(z +∆z) ≈ ϕ(z) + ∆zj∂jϕ(z), (D4)

64Note that with the definitions adopted here, T∗ 6= (T∗)−1; indeed, the operators T∗
and T∗ act on different objects (vectors and forms, respectively). However, some people will
loosely call (T∗)−1 a ‘pushforward’ (Brizard & Hahm, 2007), and generally at the practical
level one gets into no trouble by doing so. Fecko (2006, p. 58, Ex. 3.1.6) discusses the subtleties
and the possibility of defining the pushforward to be (T∗)−1.

One way of seeing the relationship of (T∗)−1 to the pushforward of a vector is to recognize
that the components of a vector, V i(z), are functions (0-forms), which therefore transform
(going forward) with (T∗)−1. For example, in a 1D Cartesian coordinate system consider the
simple guiding-center transformation xx̂ = xx̂ − ρx̂, where ρ is a constant. The numerical
value of x can be realized in two ways: x = f(x) = f(x), where f(x) = x − ρ and f(x) = x.
Upon referring to Fig. 3, one sees that f = (T∗)−1f , or xx̂ = (T∗)−1(x− ρ)x̂.
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or
∆z = ∆zj∂jϕ(z)

.
= ϕ∗(∆z) ≡ T∗∆z. (D5)

One can replace ∆z by an arbitrary vector V . It can be readily seen that the
coordinate representation of ϕ∗ is the Jacobian matrix J ij = ∂zi/∂zj:

V
i
= J ijV

j . (D6)

In the notation of vector fields, in which vectors V = V i(z)ei are written as
V = V i(z)∂i, the corresponding statement is

ϕ∗(∂a) ≡ T∗∂α = Jba∂b. (D7)

D.3 Lie derivatives

The notion of flow is important to gyrokinetics in two ways: in the Hamiltonian
time evolution of the particle phase-space coordinates; and, more abstractly,
in the development of a perturbative transformation in ǫ. For both of these
applications, the notion of the Lie derivative is fundamental. Let us define it
first in the more familiar context of time evolution. The equations of motion
dzi/dt = V i(z) define a diffeomorphism Φt : M → M that gives the time-
evolved variables in terms of their initial values. The V i’s define a vector field
V = V i∂i that gives the direction of the flow. Tensor fields A are also evolved
by the transformation. The Lie derivative of a tensor field A in the direction V
is defined by

LVA
.
=
dΦ∗t A
dt

∣∣t=0
. (D8)

Fecko (2006, p. 71) describes this as follows:

This derivative “palpates” the changes of tensor fields induced by
a tiny Lie transport along V : first, the value of the field A at the
“slightly drained away” point Φǫ(x) is transported back into x and
then it is compared with the initial value of A in x. The comparison
:= their difference, . . . divided by the increment of the parameter ǫ,
resulting in a quantity measuring just the “change of the tensor
field per unit value of the parameter t” (or the “rate of change of
the field” A along V ).

Note that it is crucial that this operation is defined in terms of the pullback;
that allows one to make a comparison at a single point in time.

It is an important theorem that

[LV1
, LV2

] = L[V1,V2], (D9)

where brackets denote commutator. In principle, the left-hand side would be
a second-order differential operator; however, according to the theorem the
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second-order terms cancel and the result is of first order.65

D.3.1 Lie derivative of functions and of 1-forms

It is easy to establish that the Lie derivative of a function f (a 0-form) is

LV f = V f ≡ V i∂if ≡ 〈df, V 〉; (D11)

i.e., it is just the directional derivative.
The action of the Lie derivative on a 1-form α will be important for the

noncanonical perturbation theory described in the next section. One can find
the result by working directly from the definition:

LV α = lim
∆t→0

Φ∗∆tα− α

∆t
. (D12)

One can determine the result of the pullback of the 1-form by representing α in
terms of coordinates; coordinates are functions, and the pullback of a function
is easy (see Appendix D.1). Thus

Φ∗∆tα = Φ∗∆t(αidzi) (D13a)

≈ αi(z + V∆t)d[z + V (z)∆t]i (D13b)

≈ αi(z)dz
i +∆t(V j∂jαi)dz

i + αi∆t(∂jV
i)dzj . (D13c)

After the interchange of i and j in the last term, one finds the desired result,

LV α = (V j∂jαi + αj∂iV
j)dzi. (D14)

By antisymmetrizing the ∂jαi in the first term, one obtains

LV α = [V j(∂jαi − ∂iαj) + V j∂iαj + (∂iV
j)αj︸ ︷︷ ︸

∂i(V
jαj)

]dzi. (D15)

In terms of the interior product defined in Sec. C.2, one can write Eq. (D15) as

LV α = iV dα+ d(iV α). (D16)

This is a special case of Cartan’s formula (sometimes called Cartan’s magic
formula). In fact, it holds for all p-forms; it relates the Lie derivative L, interior
product i, and exterior derivative d.

65This can be checked readily when the Lie derivatives act on functions, since the Lie
derivative is then merely the directional derivative [see Eq. (D11)]:

[LV , LW ]f = V j∂j(W
i∂if) −W j∂j(V

i∂if) (D10a)

= V j(∂jW
i)∂if −W j(∂jV

i)∂if (D10b)

= (V j∂jW
i∂if −W j∂jV

i∂if (D10c)

= L[V,W ]f. (D10d)
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It is clear from the definition that tLV is the first-order part of Φ∗t : Φ∗t =
1 + tLV + · · · . But one can say more. It follows from dΦ∗t /dt = dΦ∗t+s/ds|s=0

that
dΦ∗t
dt

= Φ∗t LV , (D17)

from which one can establish that66

Φ∗t = exp(t LV ). (D18)

D.3.2 Lie transforms

So far we have discussed flows that evolve in time. Consider instead fixed
time, but a flow that develops in a perturbation parameter ǫ. Given a vec-
tor generating field W (independent of ǫ), one can therefore define a flow
Φ∗ǫ = exp(ǫLW ) = exp(LǫW ). This effects a particular coordinate transfor-
mation z = TǫW z, called a Lie transform, and induces the corresponding pull-
back T∗ǫW . Lie transforms with more degrees of freedom can be obtained by
iterating elementary transforms. In the method of Dragt & Finn (1976), one
writes

Tǫ = . . . eǫ
3LW3 eǫ

2LW2 eǫLW1 ≡ . . . eL3eL2eL1 (D19a)

= 1 + L1 + L2 +
1

2
L2
1 + · · · . (D19b)

Such near-identity transformations will be used in Sec. E.2 to implement non-
canonical perturbation theory. Given Tǫ, the corresponding pullback transfor-
mation T∗ǫ is obtained from Tǫ by replacing Ln by Ln.

E Symplectic structure and noncanonical coor-
dinates

The fact that Hamiltonian dynamics is symplectic frees one from the necessity
of employing canonical coordinates. Great progress has been made in gyroki-
netics by using noncanonical variables, a technique first advocated by Littlejohn
(1982).

From Arnold (1978):

A symplectic structure on a manifold is a closed nondegenerate dif-
ferential 2-form. The phase space of a mechanical system has a
natural symplectic structure.

On a symplectic manifold, as on a riemannian manifold, there is a
natural isomorphism between vector fields and 1-forms. A vector

66A common example is the Taylor expansion of ψ(x+t) = ψ(x)+tψ′(x)+ 1
2
t2ψ′′(x)+ · · · =

exp(t ∂x)ψ. With V = ∂x (i.e., V x = 1), this can be written as ψ(x + t) = Φ∗
t ψ with the

pullback given by Eq. (D18).
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field on a symplectic manifold corresponding to the differential of
a function is called a hamiltonian vector field. A vector field on
a manifold determines a phase flow, i.e., a one-parameter group of
diffeomorphisms. The phase flow of a hamiltonian vector field on
a symplectic manifold preserves the symplectic structure of phase
space.

The vector fields on a manifold form a Lie algebra. The hamiltonian
vector fields on a symplectic manifold also form a Lie algebra. The
operation in this algebra is called the Poisson bracket.

From Gotay & Isenberg (1992):

What is the origin of the unusual name “symplectic”? It is derived
from the Greek σνµπλǫκτικús, which is the antecedent of the Latin
“complex.” Its mathematical usage is due to Hermann Weyl who, in
an effort to avoid a certain semantic confusion, renamed the then ob-
scure “line complex group” the “symplectic group.” But whatever its
etymology, the adjective “symplectic” means “plaited together” or
“woven.” This is wonderfully apt, for it is this intertwining—already
evident in the above expression for the form [Ω =

∑n
i=1 dqi ∧ dpi]—

that most characterizes, and is in fact the essence of, both sym-
plectic geometry and Hamiltonian mechanics. And it is the intricate
plaiting together of mathematics and physics which gives symplectic
geometry its power and its promise.

E.1 Noncanonical Hamiltonian mechanics

In Appendix C we pointed out that Lagrange’s variational principle can be
written as δ

∫
γ = 0, where the ‘fundamental’ or Poincaré–Cartan differential

1-form is γ
.
= p · dq − H dt. The p · dq term is called the symplectic part.

The exterior derivative of γ defines the fundamental 2-form ω̂ = dγ. This is
trivially closed: dω̂ = ddγ = 0. However, it is degenerate: det[ω̂] = 0 since ω̂ is
antisymmetric and the dimension of the extended phase space is odd.

Although in principle one can transform γ to any set of new variables one
pleases (including transformations of the time t), an important subset of trans-
formations consists of those that leave t invariant. Then the phase-space com-
ponents of ω̂ define an even-dimensional submatrix that is called the Lagrange
tensor ω. This defines a closed, nondegenerate, differential 2-form that deter-
mines the natural symplectic structure of Hamiltonian mechanics. The Euler–
Lagrange equations are

ωij
dzj

dt
=
∂H

∂zi
+
∂γi
∂t
. (E1)

It is conventional to introduce the Poisson tensor J (not to be confused with
a Jacobian) as the (fully contravariant) inverse of ω. Thus the equations of
motion are explicitly

dzi

dt
= J ij

(
∂H

∂zj
+
∂γj
∂t

)
. (E2)
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In a canonical coordinate system, ∂γi/∂t = 0 and one recovers the usual form
of Hamiltonian’s equations

dz

dt
= J · ∂H

∂z
, (E3)

with the canonical representation of the Poisson tensor being

J =

(
0 I

−I 0

)
. (E4)

The form of Eq. (E3) is also recovered for noncanonical representations in which
the transformation is explicitly time-independent.

Equation (E3) can be written as

dzi

dt
= {zi, H}, (E5)

where the Poisson bracket of A and B is

{A,B} .
= (∂iA)J

ij(∂jB). (E6)

E.2 Noncanonical Lie perturbation theory

The strategy of noncanonical Lie perturbation theory is to construct a variable
transformation T and the induced pullback transformation67 T∗ (Appendix D)
that transforms γ to a new 1-form γ chosen such that all of its components
are independent of (transformed) gyrophase ζ. If ζ is chosen as one of the
gyrocenter coordinates, it is then a theorem68 (Cary & Littlejohn, 1983) that
the coefficient µ of dζ is conserved: γ = · · · + µ dζ. µ is known as the first
adiabatic invariant. The transformation law (for a differential 1-form γ) is

γ = (T∗)−1γ + dŜ, (E7)

67For gyrokinetics, Brizard has found it useful to construct the pullback (more precisely, the
pushforward) transformation in two steps (Brizard, 1990; Brizard & Hahm, 2007): he writes
(T∗)−1 = (T∗

gy)
−1(T∗

gc)
−1. Here gc stands for guiding center and refers to the physics of

guiding-center motion in the presence of inhomogeneous magnetic field but in the absence
of fluctuation potential; gy stands for gyrokinetic and refers to the further physics induced
by the presence of the potential. The guiding-center transformation involves an asymptotic
expansion in the inhomogeneity parameter ǫB = ρ/LB , while the gyrokinetic transformation
involves expansion in the size ǫδ of the fluctuations. In a maximal ordering, ǫB ∼ ǫδ ∼ ǫ.

Use of this two-step procedure is technically convenient, although in practice it has been
typically carried out only to O(ǫB, ǫ

2
δ). While this might be adequate in some cases,

Parra & Calvo (2011) were interested in the complete second-order Hamiltonian through O(ǫ2)
in the maximal ordering, in which case one needs terms through O(ǫ2δ, ǫδǫB, ǫ

2
B). They ar-

gued for a one-step procedure, especially to be sure that the cross terms of O(ǫδǫB) were not
overlooked.

A question is, Is there any inherent advantage to a one-step vs a two-step approach? In
principle, the answer is no; given any two successively applied transformations T1 and T2,
it is always possible to define the one-step transformation T = T2T1. Trouble can arise if
one of the transformations is not worked out to the necessary order, or (closely related) if
gyrophase information is neglected prematurely in a truncated expansion; however, that need
not happen if one is careful. For the perspective of Parra & Calvo, see the excerpt from their
paper in Sec. L.13.

68This is a special case of Noether’s theorem; see Appendix H.
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where Ŝ is a gauge scalar (whose presence can be shown to not affect the
equations of motion). The idea is to express the coordinate transformation T
(z = Tz) perturbatively in terms of unknown Lie generators (vector fields) wi(z)

(i denoting the order in ǫ), then to choose those (and Ŝ) to enforce the ζ inde-
pendence of γ. An important technical simplification, first used in this context
by Littlejohn (1982), can be made by invoking Cartan’s formula (Sec. D.3)

LXγ = iXdγ + d(iXγ). (E8)

This is useful because we saw in Sec. D.3.2 that T∗ can be written as a series
involving Lie derivatives: (T∗)−1 = 1 − Lw1

+ · · · . At first order one has
Lw1

γ = iw1
γ+d(iw1

γ). Because the last term on the right-hand side of Eq. (E8)

is a pure derivative, it can be combined with dŜ to give a new quantity dS (which
still does not affect the equations of motion). Thus as far as the dynamics are
concerned one can interpret Lw1

γ as iw1
dγ = wk1ωkidz

i. This can be applied
recursively to products such as Lw2

Lw1
using the fact that the Lie derivative on

a pure differential vanishes. It turns out that there is sufficient freedom in the
choice of S and the wi’s to write γ, through arbitrary order, as

γ =
(q
c
A(X) +mU b̂

)
· dX + (µ dζ −K · dX)−H dt (E9)

(i.e., two perpendicular components of kinetic momentum have been elimi-
nated). Here K

.
= (∇e1) · e2 is the gyrogauge vector69 (Littlejohn, 1984).

There is further freedom in how information is partitioned between the sym-
plectic part and the Hamiltonian part. In a purely symplectic representation,
one preserves the form of the symplectic part of the 1-form to have its guiding-
center form; one then has a nontrivial representation U = TU . In a purely
Hamiltonian representation, one preserves U = U and absorbs higher-order
corrections into H . Mixed representations are also possible. The calculation
performed by Parra & Calvo (2011) of a second-order Hamiltonian used a sym-
plectic representation at first order but a Hamiltonian one at second order. The
physical content of all such representations is invariant, although expressed in
terms of different Poisson brackets and transformations. This is discussed in a
recent paper by Brizard & Tronko (2012).

The virtue of preserving the symplectic structure is that the Poisson brackets
retain their guiding-center form [a particular specialization of Eq. (E6)]. They
were derived by Littlejohn (1983) and are recorded in the review article of

69Littlejohn explains why the gyrogauge vector is necessary in order to guarantee that the
equations of motion do not depend on the arbitrary choice of the perpendicular unit vectors.
He also shows that K can be expressed in terms of differential operations on B.
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Brizard & Hahm (2007, p. 448)70:

{F ,G} =
∂F
∂ζ

∂G
∂µ

− ∂F
∂µ

∂G
∂ζ

+
B∗
B∗

·
(
∇F ∂G

∂p‖
− ∂F
∂p‖

∇G
)

− cb̂

eB∗
·∇F ×∇G +

(
∂F
∂w

∂G
∂t

− ∂F
∂t

∂G
∂w

)
. (E10)

F Ponderomotive nonlinearities71

The equations of motion for a gyrocenter follow from the guiding-center Poisson
bracket of the gyrocenter position and the gyrocenter Hamiltonian H : ẋ =
{x, H}. H also determines the polarization in Poisson’s equation as well as the
Reynolds stresses in the gyrokinetic momentum conservation law. In the present
section we discuss H in its simplest nonlinear manifestation: its second-order
form in the absence of both magnetic-field gradients and FLR effects. In that
case, one finds72

H2 = −1

2
miu

2
E. (F1)

In addition to elucidating some subtleties about the distinction between the
lowest-order and the true magnetic moment, and between the unbarred and
barred cooordinate systems, the calculation that we describe here serves as an
explicit example of the noncanonical 1-form perturbation theory described in
the previous section.

The interpretation of H2 is somewhat subtle and nontrivial. Frequently the
program for obtainingH is described as a systematic, order-by-order elimination
of gyrophase ζ, which inevitably conjures up the idea of an average over a rapidly
rotating gyroradius vector ρ. On the other hand, one usually associates the cold-
ion limit Ti → 0 with a zero-gyroradius limit ρ → 0. In that limit, one could
inquire whether there is anything left to rotate.

One of the difficulties with such discussion is an imprecision about exactly to
which coordinates one is referring. Let us define the ‘lowest-order’ gyrocenterX
by X ≈ x− ρ, where ρ

.
= b̂× v⊥/ωc; gyrophase is defined in terms of v⊥ (or,

equivalently, ρ). This definition is natural, and the approximation becomes
exact for purely circular motion. However, in the presence of an electrostatic
potential φ, X of course moves with (at least) the E×B velocity; the particle
motion is not precisely circular. Relative to the instantaneous center of gyration,
defined in some systematic way, one can introduce a ‘true’ gyrophase ζ 6= ζ and

70The terms involving ∂/∂µ have been modified to conform with our definition µ
.
=

1
2
mv2⊥/ωc.
71Some of the material of this section has been distilled into the Brief Communication by

Krommes (2013).
72This result is well known (Lee, 1983; Dubin et al., 1983; Mishchenko & Brizard, 2011);

see, for example, discussion by Scott & Smirnov (2010). Some of the underlying physics, as
discussed in this section, is perhaps not so well known.
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a true magnetic moment µ 6= µ. One must be careful about the meaning of the
‘zero-gyroradius limit’; at fixed ωc, does one mean ρ(µ, ζ) → 0 or ρ(µ, ζ) → 0?

The definitions of the new, barred variables are not unique in the absence of a
further constraint (which amounts to giving a precise meaning to ‘instantaneous
center of gyration’). That constraint is the adiabatic conservation of the true
magnetic moment µ. To guess the form of µ, one can invoke the idea of Galilean
invariance. The lowest-order quantity µ

.
= 1

2mv
2
⊥/ωc is not Galilean-invariant;

it changes its value under a shift in velocity. Galilean invariance is restored if
v⊥ is referred to a reference velocity, which is naturally chosen to be uE. Thus,
one guesses that

µ ≈ 1

2
m|v⊥ − uE(x)|2/ωc. (F2)

Indeed, it is easy to demonstrate from the equation of motion

dv

dt
=

q

m
(E + c−1v ×B) (F3)

that µ is exactly conserved when uE is constant. Putting that another way, if
one makes the transformation v⊥ = uE + δv⊥, one finds for constant uE that
the equation of motion reduces to

dδv⊥

dt
− ωcδv⊥ × b̂ = 0, (F4)

the solution of which is purely circular motion. That is, the motion is purely
circular in a frame moving with uE.

To discuss the cold-ion limit, one usually invokes the idea of an equilibrium
Maxwellian distribution. An equilibrium solution of the gyrokinetic equation
should be a function of the constants of motion. Indeed, a perpendicular ion
Maxwellian shifted by uE is proportional to

exp

(
−1

2
|v⊥ − uE|2/v2ti

)
= e−µωc/Ti . (F5)

Thus the limit Ti → 0 constrains µ to vanish [the PDF is proportional to δ(µ)].
With gyroradius defined by ρ

.
= v⊥/ωc = (2µ/mωc)

1/2 and similarly ρ
.
=

(2µ/mωc)
1/2, one sees that ρ → 0 in the cold-ion limit. ρ, however, does not

vanish, since µ = 0 constrains v⊥ to be equal to uE, or ρ = uE/ωc. This length
is not associated with circular motion.

Thus it is crucial to understand the distinction between the barred and
unbarred coordinates, and the definitions of each. Although at first order it is
not hard to use geometric reasoning to obtain the barred coordinates, the most
systematic procedure is to employ the symplectic methodology described in the
last section. The constant-B, zero-FLR limit provides the simplest example of
that procedure.

We use Lie transforms (Sec. D.3.2) to represent the transformation T be-
tween the unbarred and barred coordinates: z = Tz, where (Dragt & Finn,
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1976)

T = . . . eL3eL2eL1 = 1+L1+

(
L2 +

1

2
L2
1

)
+

(
L3 + L2L1 +

1

6
L3
1

)
+ · · · . (F6)

Here Ln ≡ ǫnwn, where wn is the nth-order vector field: wn = wνn∂ν . Therefore

zν = zν + wν1 + wν2 +
1

2
L1w

ν
1 + · · · . (F7)

We do not make a preparatory transformation to a gyrocenter position variable;
we begin with z = {x, U, µ, ζ}, where U .

= v · b̂ and ζ = tan−1(−vy/vx), and let
the transformation determine the proper gyrocenter position.

F.1 Heuristic discussion of the first-order generating func-
tions

For constant B, it is easy to guess the first-order generating functions wν1 . In
that case, parallel and perpendicular dynamics cleanly decouple, and at first
order a long-wavelength spatial dependence of E should just enter parametri-
cally. Thus one anticipates wU1 = 0 and wx

1 · b̂ = 0. Also, on the basis of the
previous observation that for constant uE the motion is purely circular in a
frame moving with uE, one expects that

wx

1⊥ = −ρ (F8)

so that x = x− ρ+ · · · . From Eq. (F2), the first-order term in the expected µ
is proportional to

− ω−1
c v⊥ · uE ∝ −ω−1

c v⊥ĉ ·E × b̂ = −ρâ ·E = ρ ·∇φ; (F9)

thus we expect to find
wµ1 ∝ ρ ·∇φ. (F10)

Finally, to obtain wζ1 we observe that a particle with fixed gyrocenter in
circular motion will feel a periodically varying force that is maximum when
v⊥ ∝ ĉ is aligned with E. That force, of course, is responsible for translation of
the gyrocenter at a speed uE and also for periodic variations of ζ̇ with respect

to the constant ζ̇ = ωc. Thus the effect should be proportional to ĉ ·∇φ̂, where
φ̂

.
= qφ/m is a convenient variable used in the later calculations, i.e., wζ1 =

β(v⊥)ĉ ·∇φ̂, where β(v⊥) is a dimensional constant to be determined. Because
ζ is dimensionless, it is easy to see that the dimensions of β are [β] = [t][v]. The
natural time scale is ω−1

c , and if one argues that the size of the effect should
depend on the gyroradius ρ ∝ v⊥, one concludes that β ∝ (ωcv⊥)

−1. In fact,
the proportionality constant turns out to be unity; we will find

wζ1 = (ωcv⊥)
−1ĉ ·∇φ̂. (F11)
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F.2 Systematic derivation of the generating functions

We now rederive these and also (most of) the second-order results by proceeding
systematically from the particle 1-form

γ =
q

mc
A · dx

︸ ︷︷ ︸
γ(−1)

+(U b̂+ v⊥ĉ) · dx−
(
1

2
U2 + µ̂ω̂c + φ̂

)
dt

︸ ︷︷ ︸
γ(0)

, (F12)

where mass m has been divided out for convenience, φ̂
.
= qφ(x)/m, µ̂

.
= 1

2v
2
⊥,

and ω̂c = 1. The reason for introducing µ̂ is so that we can deal with an
order-unity quantity. (In the presence of a non-constant B, we would define
µ̂
.
= µωc0, where ωc0 is a constant reference gyrofrequency. Then ω̂c = ωc/ωc0.)

Subsequently we will just write µ instead of µ̂ for convenience. We order the
vector potential A large, O(ǫ−1). We consider a time-independent electrostatic
potential φ, which we consider to be O(1) but to have only long-wavelength
variation; then the derived E × B velocity will be O(ǫ). The fundamental
equation is

γ = (T∗)−1γ + dS, (F13)

where73

(T∗)−1 = 1− L1 +

(
−L2 +

1

2
L2
1

)
+

(
−L3 + L1L2 −

1

6
L3
1

)
+ · · · (F14)

and S is a gauge scalar that will also be expanded in ǫ. Order by order, one has

γ(−1) = γ(−1) + dS(−1), (F15a)

γ(0) = γ(0) − L1γ
(−1) + dS(0), (F15b)

γ(1) = γ(1) − L1γ
(0) +

(
−L2 +

1

2
L2
1

)
γ(−1) + dS(1), (F15c)

γ(2) = γ(2) − L1γ
(1) +

(
−L2 +

1

2
L2
1

)
γ(0)

+

(
−L3 + L1L2 −

1

6
L3
1

)
γ(−1) + dS(2), (F15d)

...

For this problem, γ(n≥1) = 0.
We also need the action of an arbitrary L on an arbitrary 1-form. In

Sec. D.3.1 we showed that effectively (from the point of view of the equations
of motion)

Lwγ = wν(∂νγλ − ∂λγν)dz
λ. (F16)

73The recipe for constructing (T∗)−1 from T∗ is simple: Change the sign of each L and
swap the order of all noncommuting operators.
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We assume that time is not transformed: wt = 0. Also, all of the coefficients of
the 1-forms are time-independent, so ∂t = 0. Then

Lwγ = {wx · [∇γx − (∇γx)
T ] + wU (∂Uγx −∇γU )

+ wµ(∂µγx −∇γµ) + wζ(∂ζγx −∇γζ)} · dx
+ [wx · (∇γU − ∂Uγx) + wµ(∂µγU − ∂Uγµ) + wζ(∂ζγU − ∂Uγζ)]dU

+ [wx · (∇γµ − ∂µγx) + wU (∂Uγµ − ∂µγU ) + wζ(∂ζγµ − ∂µγζ)]dµ

+ [wx · (∇γζ − ∂ζγx) + wU (∂Uγζ − ∂ζγU ) + wµ(∂µγζ − ∂ζγµ)]dζ

+ (wx ·∇ + wU∂U + wµ∂µ+ wζ∂ζ)γt dt. (F17)

A common operation will be the action of Lw on γ(−1), which has only an
x component that depends only on x. Thus

Lwγ
(−1) = wx · [∇γ(−1)

x − (∇γ(−1)
x )T ] · dx. (F18)

Upon noting that
∂iAj − ∂jAi = ǫijk(∇×A)k, (F19)

one can readily verify that

w · [(∇A)− (∇A)T ] = −w×∇×A, (F20)

so one finds
Lwγ

(−1) = −ωcwx
× b̂ · dx. (F21)

F.3 O(ǫ−1)

At dominant order, one can choose S(−1) = 0, so

γ(−1) = γ(−1) =
q

mc
A · dx. (F22)

F.4 O(ǫ0)

From Eqs. (F12) and (F15b), one has

γ(0) = (U b̂+ v⊥ĉ+ ωcw
x

1 × b̂+∇S(0)) · dx

+ ∂US
(0) dU + ∂µS

(0) dµ+ ∂ζS
(0) dζ −

(
1

2
U2 + µω̂c + φ̂

)

︸ ︷︷ ︸
H0

dt. (F23)

One can choose S(0) = 0 without encountering any contradictions. We want

to eliminate the ζ dependence from γ
(0)
x . That dependence arises from the

terms in ĉ and wx
1 . Then crossing the x component with b̂ determines the

perpendicular part of wx
1 to be

wx

1⊥ = −ρ, (F24)

where ρ
.
= ρâ is the lowest-order gyroradius. This leaves

γ(0) = U b̂ · dx−H0 dt. (F25)
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F.5 O(ǫ1)

At higher orders, simplifications arise by writing as many of the formulas as
possible in terms of already-determined barred quantities. For example, apply-
ing L1 to Eq. (F15b) gives74

L1γ
(0) = L1γ0 − L2

1γ
(−1) (F27)

or
1

2
L2
1γ

(−1) =
1

2
L1(γ

(0) − γ(0)). (F28)

Upon inserting this result into Eq. (F15c) and recalling that γ(−1) = γ(−1), one
obtains

γ(1) = −L2γ
(−1) − 1

2
L1(γ

(0) + γ(0)) + dS(1). (F29)

Now with γ(0) = (U b̂+ v⊥ĉ) · dx− [ 12U
2 + µω̂c + φ̂(x)]dt, one has

L1γ
(0) = (wU1 b̂+ wµ1 ∂µv⊥ĉ+ wζ1∂ζv⊥ĉ) · dx

−wx

1 · ∂U (U b̂)dU −wx

1 · ∂µ(v⊥ĉ)dµ−wx

1 · ∂ζ(v⊥ĉ)dζ

− (wx

1 ·∇+ wU1 ∂U + wµ1 ∂µ)

(
1

2
U2 + µω̂c + φ̂

)
dt (F30a)

= (wU1 b̂+ wµ1 v
−1
⊥ ĉ − wζ1v⊥â) · dx

−wx

1 · b̂ dU −wx

1 · ĉ︸ ︷︷ ︸
0

v−1
⊥ dµ+wx

1 · âv⊥︸ ︷︷ ︸
2µ/ωc0

dζ

− (wx

1 ·∇φ̂+ wU1 U + wµ1 ω̂c)dt. (F30b)

The terms tracing their origin from v⊥ĉ · dx are absent from γ(0), so

L1γ
(0) = wU1 b̂ · dx−wx

1 · b̂ dU − (wx

1 ·∇φ̂+ wU1 U + wµ1 ω̂c)dt. (F31)

Thus, upon recalling that wx

1⊥ = −ρ,

γ(1) =

(
ωcw

x

2 × b̂− wU1 b̂−
1

2
wµ1 v

−1
⊥ ĉ +

1

2
wζ1v⊥â+∇S(1)

)
· dx

+ (−wx

1‖ + ∂US
(1))dU + ∂µS

(1)dµ+ (µω−1
c0 + ∂ζS

(1))dζ

+ [(−ρ+ wx

1‖ b̂) ·∇φ̂+ wU1 U + wµ1 ω̂c]dt. (F32)

From the ζ component, one finds that ∂ζS
(1) = 0. It is consistent to choose

S(1) = 0. From the x component, the parallel projection gives wU1 = 0. One can

74In writing Eq. (F27), we have omitted the term L1dS(0). From Cartan’s magic formula
(D16), one has

LwdS = iwddS + d(iwdS) = d(iwdS). (F26)

Thus the contribution from LwdS(0) is a pure differential. Since that can be absorbed
into S(1), we do not write it explicitly. We proceed similarly at higher orders.
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annihilate the U component by choosing wx

1‖ = 0. By eliminating ζ dependence

from the t component, 〈wµ1 〉 is not determined, but the fluctuating part is found
to be

δwµ1 = ω̂−1
c ρ ·∇φ̂. (F33)

By crossing the x component with b̂, the perpendicular part ofwx
2 is determined

to be

wx

2⊥ = ω−1
c

1

2

(
wµ1 v

−1
⊥ â+ wζ1v⊥ĉ

)
. (F34)

One is left with
γ(1) = µω−1

c0 dζ + 〈wµ1 〉ω̂c dt. (F35)

F.6 O(ǫ2)

We proceed to express the operations involved in γ(2) in terms of quantities al-
ready known (as much as possible). First, one can eliminate γ(0) from Eq. (F15c)
by using Eq. (F15b):

γ(1) = −L1(γ
(0) + L1γ

(−1)) +

(
−L2 +

1

2
L2
1

)
γ(−1) + dS(1) (F36a)

= −L1γ
(0) −

(
L2 +

1

2
L2
1

)
γ(−1) + dS(1). (F36b)

Eliminating γ(0) from Eq. (F15d) gives

γ(2) =

(
−L2 +

1

2
L2
1

)
(γ(0) + L1γ

(−1)) +

(
−L3 + L1L2 −

1

6
L3
1

)
γ(−1) + dS(2)

(F37a)

=

(
−L2 +

1

2
L2
1

)
γ(0) − L2L1γ

(−1) +
1

2
L3
1γ

(−1)

+

(
−L3 + L1L2 −

1

6
L3
1

)
γ(−1) + dS(2) (F37b)

= −L3γ
(−1) + [L1, L2]γ

(−1) +
1

3
L3
1γ

(−1) +

(
−L2 +

1

2
L2
1

)
γ(0). (F37c)

One can find the L3
1 term by applying L1 to Eq. (F36b); that gives (recalling

that γ(1) = 0)

L1γ
(1) = −L2

1γ
(0) −

(
L1L2 +

1

2
L3
1

)
γ(−1), (F38)

or
1

3
L3
1γ

(−1) = −2

3
(L1L2γ

(−1) + L2
1γ

(0) + L1γ
(1)). (F39)

89



Then

γ(2) = (−L3 + [L1, L2])γ
(−1) − 2

3
(L1L2γ

(−1) + L2
1γ

(0) + L1γ
(1))

+

(
−L2 +

1

2
L2
1

)
γ(0) + dS(2) (F40a)

= (−L3 + [L1, L2])γ
(−1) − 2

3
(L1L2γ

(−1) + L1γ
(1))−

(
L2 +

1

6
L2
1

)
γ(0)

+ dS(2). (F40b)

Now

L2γ
(−1) = −ωcwx

2 × b̂ · dx (F41a)

=
1

2
(−wµ1 v−1

⊥ ĉ+ wζ1v⊥â) · dx, (F41b)

where we used Eq. (F34). Then [specializing Eq. (F17) to the case of only an
x component and recalling Eq. (F24)]

L1L2γ
(−1) =

[
−wx

1 ×∇× (−ωcwx

2 × b̂)

+ wµ1 ∂µ

(
1

2
(−wµ1 v−1

⊥ ĉ+ wζ1v⊥â)

)

+ wζ1∂ζ

(
1

2
(−wµ1 v−1

⊥ ĉ+ wζ1v⊥â)

)]
· dx

−wx

1 · ∂U
(
1

2
(−wµ1 v−1

⊥ ĉ+ wζ1v⊥â)

)
dU

−wx

1 · ∂µ
(
1

2
(−wµ1 v−1

⊥ ĉ+ wζ1v⊥â)

)
dµ

−wx

1 · ∂ζ
(
1

2
(−wµ1 v−1

⊥ ĉ+ wζ1v⊥â)

)
dζ (F42)

= [. . . ] · dx+
1

2
ρv⊥∂Uw

ζ
1dU

+
1

2
ρ∂µ(w

ζ
1v⊥)dµ+

1

2
(ω−1
c wµ1 + ρv⊥∂ζw

ζ
1)dζ. (F43)

Upon recalling that γ(1) = µω−1
c0 dζ, one finds that

L1γ
(1) = ω−1

c0 (−wζ1 dµ+ wµ1 dζ). (F44)

Upon recalling that γ(0) = U b̂ · dx−H0dt, one has

L2γ
(0) = wU2 b̂ · dx−wx

2 · b̂ dU − (wx

2 ·∇φ̂+ wU2 U + wµ2 ω̂c)dt. (F45)

Finally, we calculate L2
1γ

(0). We had [Eqs. (F31) and (F33)]

L1γ
(0) = wU1 b̂·dx−wx

1 ·b̂dU−(wx

1 ·∇φ̂+wU1 U+wµ1 ω̂c)dt = −〈wµ1 〉ω̂c dt. (F46)
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Then from the last line of Eq. (F17),

L2
1γ

(0) = (−ρ ·∇+ wµ1 ∂µ)(−〈wµ1 〉ωc)dt. (F47)

Now we add up all the terms contributing to Eq. (F40b). Note the funda-
mental result from the theory of Lie derivatives that [Eq. (D9)]

[L1, L2] = L[w1,w2], (F48)

so the commutator term just contributes to the x component. The ζ component
is

γ
(2)
ζ = −2

3

(
1

2
(ω−1
c0 w

µ
1 + 2µω−1

c0 ∂ζw
ζ
1) + wµ1ω

−1
c0

)
+ ∂ζS

(2) (F49a)

= −ω−1
c0

(
wµ1 +

2

3
µ∂ζw

ζ
1

)
+ ∂ζS

(2). (F49b)

We preserve the symplectic structure by demanding that γ
(2)
ζ = 0, which re-

quires 〈wµ1 〉 = 0; then [Eq. (F46)] L1γ
(0) = 0. Equation (F49b) then determines

the fluctuating part of S(2) to be

δS(2) = ω−1
c0

∫
dζ

(
δwµ1 +

2

3
µ∂ζw

ζ
1

)
(F50a)

= −ω−1
c ρĉ ·∇φ̂+

2

3
ω−1
c0 µw

ζ
1 . (F50b)

To determine wζ1 , we turn to the µ component. That is

γ(2)µ = −2

3

(
1

2
ρ∂µ(w

ζ
1v⊥)− wζ1

)
+ ∂µS

(2) (F51a)

= −2

3

[
∂µ

(
1

2
ρv⊥w

ζ
1

)
− 3

2
wζ1

]
+ ∂µS

(2) (F51b)

= wζ1 − ω−2
c v−1

⊥ ĉ ·∇φ̂, (F51c)

where we used Eq. (F50b). One finds 〈wζ1〉 = 0 and

δwζ1 = (ωcv⊥)
−1ĉ ·∇φ̂, (F52)

consistent with our previous intuitive and geometrical arguments.
Finally, we consider γt, which stems solely from −L2γ

(0) [Eq. (F45)]:

γ
(2)
t = (wx

2 ·∇φ̂+ wU2 U + wµ2 ω̂c)dt, (F53)

where Eqs. (F33) and (F52) were used. One sees from Eq. (F34) that

wx

2⊥ =
1

2
ω−2
c ∇⊥φ̂. (F54)
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Consideration of the b̂ projection of γx leads one to conclude that wU2 = 0. One
must go to third order to find that 〈wµ2 〉 = 0. Thus wµ2 is purely fluctuating,
but there are no fluctuating terms in γt; therefore w

µ
2 = 0 and

γ
(2)
t = 1

2ω
−2
c |∇⊥φ̂|2dt ≡ −m−1H

(2)
dt. (F55)

(Recall that we divided out an m at the beginning.) One readily finds that

H
(2)

= −1

2
mu2E. (F56)

We will given an interpretation of this result in the next section.

F.7 Interpretation of H
(2)

Let us check the consistency of these results by examining the resulting variable
transformation. From Eq. (F7),

x = x+wx

1 +wx

2 +
1

2
L1w

x

1 + · · · . (F57)

We have

L1w
x

1 = (wx

1 · ∇︸︷︷︸
0

+wµ1 ∂µ + wζ1∂ζ)(−ρ) (F58a)

= −{ρ ·∇φ̂[(ωcv⊥)
−1â] + (ωcv⊥)

−1ĉ ·∇φ̂(ρĉ)} (F58b)

= −ω−2
c [(â â+ ĉ ĉ) ·∇φ̂] (F58c)

= −ω−2
c ∇⊥φ̂. (F58d)

Upon recalling Eq. (F54), we see that the second-order terms of Eq. (F57) cancel
and one has

x = x− ρ+O(ǫ3). (F59)

Similarly, one has

µ = µ+ wµ1 + wµ2 +
1

2
L1w

µ
1 + · · · , (F60)

with

L1w
µ
1 = (wµ1 ∂µ + wζ1∂ζ)(ω

−1
c ρ ·∇φ̂) (F61a)

= ω−2
c |∇⊥φ̂|2. (F61b)

(We already calculated L1ρ above.) Since wµ2 = 0, one readily sees that
Eq. (F60) reproduces Eq. (F2):

µ =
1

2
m|v⊥ − uE|2/ωc +O(ǫ3). (F62)
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Because we chose the variable transformation to preserve the symplectic
structure, the Poisson brackets retain their guiding-center forms (E10). In par-
ticular,

dx

dt
= {x, H} =

c

B
b̂×∇H(ζ) + · · · . (F63)

The contribution from H
(0)

= qφ gives the usual E ×B drift uE. From H
(2)

,
one obtains a ponderomotive correction

∆u =
c

B
b̂×∇

(
−1

2
mu2E

)
. (F64)

stemming from the ponderomotive potential q−1[− 1
2mu

2
E(x)]. To interpret that

potential, we turn to the equation of motion

m
dv

dt
= qE(x) +mωcv × b̂, (F65)

which is written in terms of particle variables. Now

E(x) = E(x+ ρ) = E(x) + ρ(z) ·∇E + · · · . (F66)

Here ρ(z) = ρ(µ)â(ζ), again written in terms of particle variables. We encounter
here the same paradox alluded to earlier, which is that if one were to equate
the cold-ion limit with the limit ρ(z) → 0, the gyroradius correction (which will
ultimately contain the ponderomotive effect) would vanish. We know, however,
that is incorrect because v⊥ contains a uE part. What one must do is write ρ(z)
in terms of the barred variables, then take the limit. We have

ρ(z) = ρ(µ)â(ζ) (F67a)

= ρ(µ− δµ)â(ζ − δζ) (F67b)

= ρ(µ)â(ζ)− δµ ∂µρ(µ)â(ζ)− δζ ρ(µ)∂ζ â(ζ) + · · · (F67c)

= ρ− wµ1 (ωcv⊥)
−1â(ζ)− wζ1ρ(µ)ĉ(ζ) +O(ǫ3) (F67d)

= ρ− ω−2
c ∇⊥φ̂(x) +O(ǫ3). (F67e)

(The operations are the same as those involved in the calculation of L1w
x
1 .)

In the cold-ion limit, ρ → 0 and the ρ correction in Eq. (F66) is at second
order proportional to −∇⊥φ · ∇(−∇φ) = 1

2∇|∇⊥φ|2. Upon comparing with
Eq. (F64), one see that this corresponds exactly to the negative of the pondero-

motive potential q−1H
(2)

.
This calculation shows in detail how ponderomotive nonlinearities are in-

timately related to conservation of the magnetic moment µ. Those nonlin-
earities are most easily obtained by the systematic calculation of gyrokinetic
µ-conserving variables, but the effect is a physical one and the ponderomotive
force shows up in a particle-based calculation as well. This observation has im-
plications for the derivation of the momentum-conservation law. Although that
can be obtained most easily from the gyrokinetic–Poisson system, it also follows
from the particle-based moment equations provided that one deals properly with
the ponderomotive nonlinearities.
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G Eulerian variational principle for gyrokinetics

The seminal derivation of a gyrokinetic variational principle was by Sugama
(2000), who used a Lagrangian formulation. Here we summarize instead the
Eulerian formulation of Brizard (2000), which is based on constrained variations.

G.1 Eulerian and Lagrangian variations

In the discussion to follow, it is important to distinguish between Eulerian and
Lagrangian variations. Those are formulated in terms of general transformations
of both the coordinates xµ and the fields ψ:

xµ → ξµ
.
= xµ + δxµ, (G1a)

ψ(x) → ψ′(ξ)
.
= ψ(x) + δψL(x). (G1b)

The subscript L denotes Lagrangian. It is important to note that the change δψ
contains an intrinsic Eulerian part δψ arising from a change in shape of ψ at
fixed x (the same variation that is used in the derivation of the Euler–Lagrange
equations), as well as a change arising from the coordinate transformation; thus
the Eulerian variation is defined by

δψ(x)
.
= ψ′(x) − ψ(x). (G2)

If ψ is a scalar field, one can expand the ψ′(ξ) in Eq. (G1b) as

ψ′(ξ) = ψ′(x) + δxµ∂µψ + · · · , (G3)

so
δψ = δψL − δxµ∂µψ. (G4)

More generally, the directional derivative should be replaced by the Lie deriva-
tive in the direction of the flow defined by δxµ. To first order in ǫ, write

δxµ = ǫXµ, (G5a)

δψL = ǫΨL. (G5b)

Then the Eulerian variation is through first order

δψ = ǫΨL − ǫLXψ. (G6)

A constrained Eulerian variation is defined to be one for which δψL = 0.

G.2 Brizard’s variational principle

Brizard writes the gyrokinetic action in the form

Agy =

∫
d4xLgy(x), (G7)
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where the Lagrangian density is

Lgy(x)
.
= LM (x) −

∑

s

ns

∫
d4pFgy(z)Hgy(φ; z) (G8)

and (for electrostatics)

LM
.
=

1

8π
(|∇φ|2 −B2). (G9)

B is here the background magnetic field and does not participate in variations.
Also, H is the gyrocenter Hamiltonian in extended phase space,

Hgy(φ; z)
.
= Hgy(φ; z)− w, (G10)

and F is the extended gyrocenter (Vlasov) distribution. For physical solutions,

F(z)
.
= cδ(w −Hgy)F (z) = cδ(H)F. (G11)

However, for use in the variational principle its form must be allowed to be
arbitrary.

The argument dependence in these formulas may be confusing. The gyroki-
netic Hamiltonian is derived by the sequence of transformations {x,p} ≡ z →
Z → Z, where Z denotes the lowest-order guiding-center coordinates. Strictly
speaking, then, the gyrokinetic Lagrangian should depend on Z, and the action
should involve

∫
dX and

∫
dP . However, all of the variables are under integrals,

so they are dummies and can be renamed. Brizard has chosen to call them x
and p rather than X and P̄ (z rather than Z). This has advantages later where
a proliferation of overlines would clutter up the notation.

Eulerian variation of the functional (G7) gives straightforwardly δAgy =∫
d4x δLgy, where

δLgy(x)
.
=

1

4π
E · δE −

∑

s

ns

∫
d4p δFgy(z)Hgy(z)

−
∑

s

ns

∫
d4p

∫
d4X Fgy(z)

δHgy(z)

δφ(X)
δφ(X). (G12)

(In the last term, H rather than H appears here because w is independent
of φ. Also, X is a dummy variable of space-time integration.) Note that δF
is not considered to be a totally independent variation. Rather, it is taken to
be a constrained Eulerian variation F(Z) → F ′(Z + δZ), where δZ is a virtual
displacement in the extended phase space. From formula (G4) with ψ replaced
by the scalar distribution F and x→ Z, one finds

δF = −δZa ∂F
∂Za

. (G13)

Brizard (2001) has shown that path independence in a two-dimensional orbit–
parameter space leads to the formula

δZa = {Za,S}, (G14)
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where S is a scalar generating function for an infinitesimal transformation. Thus

δF = −{Za,S} ∂F
∂Za

= −{F ,S}. (G15)

S plays the role of an effective Hamiltonian for virtual displacements; note the
similarity between Eqs. (G14) and (G15) and the equations for Hamiltonian
time development

żi = {zi, H}, (G16a)

∂tF = −{F,H}. (G16b)

Now consider the δF term of Eq. (G12) in more detail. Using canonical
coordinates for simplicity, one has

−
∑

s

ns

∫
d4p δF H = −

∑

s

ns

∫
d4p {S,F}H (G17a)

= −
∑

s

ns

∫
d4p

(
∂S
∂xµ

∂F
∂pµ

− ∂S
∂pµ

∂F
∂xµ

)
H (G17b)

= −
∑

s

ns

∫
d4p

∂

∂xµ

(
S ∂F
∂pµ

H
)
+
∑

s

ns

∫
d4pS ∂

∂xµ

(
∂F
∂pµ

H
)

+
∑

s

ns

∫
d4p

∂

∂pµ

(
S ∂F
∂xµ

H
)
−
∑

s

ns

∫
d4pS ∂

∂pµ

(
∂F
∂xµ

H
)

(G17c)

=
∂

∂xµ

∑

s

ns

∫
d4pF

(
∂S
∂pµ

H+ S ∂H
∂pµ

)
−
∑

s

ns

∫
d4pS{F ,H} (G17d)

=
∂

∂xµ

∑

s

ns

∫
d4pFSvµ −

∑

s

ns

∫
d4pS{F ,H}, (G17e)

where vµ
.
= ∂H/∂pµ. In obtaining the last line, one used the fact that FH ≡ 0

[see Eq. (G11)].
Next, consider the evaluation of the functional derivative with respect to φ

that is required for Eq. (G12). Here it is important to recall that the deriva-
tion of the gyrokinetic 1-form proceeds (or, more precisely, can proceed; see
footnote 67 on p. 81) in two stages. First, one implements a nonperturbative
transformation Tgc to lowest-order guiding-center coordinates. That is,

Tgc : {x,p} ≡ z → {X, U, µ, ζ} ≡ Z, (G18)

which is written as Z = Tgcz. Thus

γ = Γgc −Hgc dτ, (G19)

where

Hgc
.
= H0 + δH−W, (G20a)

H0
.
= (2m)−1p2‖ + µωc, (G20b)

δH .
= qφ(X + ρ0). (G20c)
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(p‖
.
= mv‖.) By the standard result that the functional forms of scalar fields

transform inversely to the coordinates, one has

φ(X + ρ0) ≡ φgc(Z) = (T∗)−1
gc φ(Z). (G21)

Next, one implements a perturbative Lie transformation Tgy : Z → Z to
remove any residual ζ dependence. Some of that dependence may still reside
in Γ. However, there is enough freedom to preserve the symplectic structure
(and thus the form of the guiding-center Poisson brackets). Therefore, although
it may be tedious to construct the Lie transformation at high order, the form of
the gyrocenter Hamiltonian is simple. If one defines (T∗)−1 .

= (T∗gy)−1(T∗gc)−1,
then

δHgy(Z) = q〈(T∗)−1φ(Z)〉. (G22)

Since this is a statement about a functional form, all of the bars may be dropped,
so we will work with

δHgy(z) = q〈(T∗z )−1φ(x)〉 (G23)

(the subscript on T∗ indicates on which variables it operates). Then the last
term in Eq. (G12) (including the integration over x that defines the action) is

−
∫
d4x

∑

s

ns

∫
d4p

∫
d4X Fgy(z)q〈(T∗)−1

z δ4(x−X)〉δφ(X) (G24a)

= −
∫
d4X δφ(X)

∑

s

(nq)s

∫
d4x

∫
d4pFgy(z)〈(T∗z )−1δ4(x−X)〉 (G24b)

= −
∫
d4x δφ(x)

∑

s

(nq)s

∫
d3X

∫
d3pFgy(t,X,p)〈(T∗Z )−1δ3(X − x)〉.

(G24c)

In obtaining the last line, the names of the variables were interchanged, integra-
tion over the temporal delta function was done (T does not change time), and
the δ(W −Hgy) in F was integrated away (T does not depend on W ).

Upon integrating the δE term in Eq. (G12) by parts in order to isolate
the δφ, one has found in summary that δAgy =

∫
d4x δLgy, where

δLgy = −
∑

s

ns

∫
d4pS{Fgy,Hgy}

+

(
1

4π
∇ ·E −

∑

s

nq

∫
dX dpF (t,X,p)〈(T∗Z)−1δ3(X − x)〉

)
δφ

+
∂

∂xµ

∑

s

ns

∫
d3p vµFS − 1

4π
∇ · (E δφ). (G25)

Assuming that variations vanish on the boundary, the terms in the last line do
not contribute to the Euler–Lagrange equations (they will, however, be crucial
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in the Noether method to follow). Since δφ and S are independent, one finds
from the coefficient of S the result

{Fgy,Hgy} = 0, (G26)

which is the representation of the gyrokinetic equation in extended phase space.
From the coefficient of δφ, one finds a general representation of the gyrokinetic
Poisson equation:

∇ ·E = 4πρ, (G27)

where

ρ =
∑

s

(nq)s

∫
dX dpF (t,X,p)〈(T∗Z)−1δ(X − x)〉. (G28)

We have recovered the representation (29a). See the subsequent discussion of
that equation for the formally exact definition of polarization.

H Noether’s theorem

Noether’s theorem states that for every symmetry of the Lagrangian there is
an associated conservation law (for which an explicit expression is provided).
Particular examples include conservation of energy (invariance under transla-
tion in time) and conservation of toroidal angular momentum (invariance under
rotation in the toroidal angle).

H.1 General proof of Noether’s theorem

The version of the proof given here is identical to the one given in
Wikipedia:Noether’s theorem except for changes in notation. Begin with a La-
grangian density L[ψ(x), ∂µψ(x);x], where x ≡ xµ (µ = 0, . . . , 3), such that the
action is

A =

∫

Ω

d4xL(ψ, ∂µψ;x). (H1)

Here Ω is the appropriate 4D domain in space-time. First, let us recover the
conventional Euler–Lagrange equation. The variation of A under a change of
functional form of ψ (ψ → ψ + δψ) is

δA =

∫

Ω

d4x

(
∂L

∂ψ
δψ +

∂L

∂(∂µψ)
δ(∂µψ)

)
(H2a)

=

∫

Ω

d4x

[(
∂L

∂ψ
− ∂µ

∂L

∂(∂µψ)

)
δψ + ∂µ

(
∂L

∂(∂µψ)
δψ

)]
. (H2b)

Here one noted that because the variation is taken at fixed x (i.e., it is Eulerian),
one can commute the δ and the ∂ operations. One assumes that the variations
vanish on the boundary; then because δψ is arbitrary one obtains the Euler–
Lagrange equation

− ∂µ
∂L

∂(∂µψ)
+
∂L

∂ψ
= 0. (H3)
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Noether’s theorem relates to symmetries of the Lagrangian density. There-
fore, consider the infinitesimal transformation (G1) of both the coordinates and
the fields. (This variation is arbitrary; it need not vanish on the boundary.) We
postulate that the action is unchanged under this transformation, i.e., δA = 0,
where

δA =

∫

Ω′

d4ξ L[ψ′(ξ), ∂µψ
′(ξ); ξ]−

∫

Ω

d4xL[ψ(x), ∂µψ(x);x]. (H4)

We noted that the domain Ω has changed to a new domain Ω′ under the coor-
dinate transformation. Because ξ is a dummy variable of integration, one can
write

δA =

∫

Ω′

d4xL[ψ′(x), ∂µψ
′(x);x] −

∫

Ω

d4xL[ψ(x), ∂µψ(x);x]. (H5)

Write Ω′ = Ω + δΩ and integrate separately over each part of Ω′. Because the
transformation is infinitesimal, the integral over δΩ can be evaluated with the
unperturbed ψ:

δA =

∫

Ω

d4x {L[ψ′(x), ∂µψ
′(x), x] − L[ψ(x), ∂µψ(x), x]}

+

∫

δΩ

d4xL[ψ(x), ∂µψ(x), x]. (H6)

The volume δΩ comprises the boundary ∂Ω of the original domain and the
displacement δxµ. One has

∫

δΩ

d4xL[ψ(x), ∂µψ(x);x] =

∫

∂Ω

d3x δxµL(ψ, ∂µψ;x); (H7)

it then follows by Stokes’ theorem that

∫

δΩ

d4xL[ψ(x), ∂µψ(x);x] =

∫

Ω

d4x∂µ[δx
µL(ψ, ∂νψ;x)]. (H8)

Thus

δA =

∫

Ω

d4x {L(ψ′, ∂µψ
′;x)− L(ψ, ∂µψ, x) + ∂µ[δx

µL(ψ, ∂νψ;x)} (H9a)

=

∫

Ω

d4x

(
∂L

∂ψ
δψ +

∂L

∂(∂µψ)
δ(∂µψ) + ∂µ[δx

µL(ψ, ∂νψ;x)]

)
. (H9b)

Because the δ variations are Eulerian, the δ and ∂ operations commute. One
may replace the ∂L/∂ψ by using the Euler–Lagrange equation. Then the first
two terms combine to become a perfect derivative, and one finds

δA =

∫

Ω

d4x∂µ

(
∂L

∂(∂µψ)
δψ + L(ψ, ∂νψ;x)δx

µ

)
. (H10)
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Since δA = 0 and Ω is arbitrary, the integrand must vanish and one finds a
conserved 4-current:

0 = ∂µ

(
∂L

∂(∂µψ)
δψ + L(ψ, ∂νψ;x)δx

µ

)
. (H11)

We now reformulate Eq. (H11) in terms of Lagrangian variations. Using the
result (G6) one finds that Eq. (H11) becomes, after a change of sign,

0 = ∂µj
µ, (H12)

where the conserved Noether current is

jµ
.
=

∂L

∂(∂µψ)
LXψ − LXµ − ∂L

∂(∂µψ)
ΨL. (H13)

In the simplest applications to translational or rotational symmetry, the La-
grangian field variation vanishes, i.e.,

ψ(x) = ψ′(ξ), (H14)

or ΨL = 0.

H.2 Constrained variations and Noether’s theorem

The essence of Noether’s method is, given a known symmetry transformation,
to find an explicit expression for the Eulerian variation of L at fixed x and
equate that to the form that follows from Stokes’ theorem. That is, Eq. (H9a)
for δA = 0 is

L(ψ′, ∂µψ
′;x)− L(ψ, ∂µψ, x) ≡ δL = −∂µ[δxµL(ψ, ∂νψ;x)]. (H15)

Here the variations do not vanish on the boundary but are those associated
with the particular symmetry transformation. We have already worked out the
left-hand side of Eq. (H15) in the calculations leading to Eq. (G25). When the
Euler–Lagrange equations are asserted, Eq. (G25) reduces to its last line. Also,
FH vanishes, so L = LM . Therefore, Eq. (H15) reduces to

∂

∂xµ

∑

s

ns

∫
d3p vµFS − 1

4π
∇ · (E δφ) = −∂µ(δxµLM ). (H16)

What remains is to choose S to generate the desired δxµ according to Eq. (G14).
As Brizard has observed, the generator of an arbitrary spatial transformation is

S = pcan
gy · δx, (H17)

where pgy is the canonical momentum of the gyrocenter. From Eq. (G6) one
has

δφ = −δxµ∂µφ = −δx ·∇φ, (H18)
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since the Lagrangian variations vanish in Brizard’s method. Finally, the spe-
cific δx associated with an infinitesimal rotation by an amount δϕ in the toroidal
direction is

δx =
∂x

∂ϕ
δϕ = (ẑ × x)δϕ. (H19)

The Noether equation (H16) is obviously already in local conservative form,
i.e., it can be written as

∂P can
ϕ

∂t
+∇ · Πcan

ϕ = 0, (H20)

where

P can
ϕ

.
=
∑

s

ns

∫
dppcan

gy,ϕF (H21)

and one has a related definition for the canonical momentum flux. (Note that
for arbitrary vector V , one has V · ∂ϕx = Vϕ, the covariant component.) It is
important that this equation evolves the canonical momentum. Equation (H20)
must be processed further in order to find an equation for the plasma momen-
tum. That is explained by Brizard & Tronko (2011).

I Direct derivation of the gyrokinetic momen-

tum conservation law, including all magnetic
inhomogeneity effects

The methods of Scott & Smirnov (2010) and Brizard & Tronko (2011) lead one
very efficiently to a local momentum conservation law, in general geometry, that
evolves the sum of the toroidal projections of the parallel momentum and per-
pendicular polarization of the gyrocenter; certain cancellations happen almost
magically. It is instructive to derive the result in an alternate way, by con-
sidering the parallel and perpendicular evolutions separately. Neither obeys a
local conservation law by itself, but important cancellations occur when they are
summed, as we demonstrate explicitly. That leads one (Sec. I.1) to an equation
in which just one term, involving the derivative of the gyrokinetic Hamiltonian
with respect to toroidal angle, is not obviously conservative. Further manipula-
tions reviewed in Sec. I.2 lead one to the final conservative result provided that
both the gyrokinetic equation and the gyrokinetic Poisson equation are derived
consistently from the same Lagrangian.

I.1 Summing the parallel and perpendicular evolutions

We will write the gyrocenter distribution function as F (X, µ, U, t), where µ is
conserved. The gyrocenter equations of motion in general geometry and for
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arbitrary H are [in the symplectic representation; see Eqs. (E10)]

dX

dt
= B−1∗

(
B∗U +

c

q
b̂×∇H

)
, (I1a)

m
dU

dt
= − 1

B∗
B∗ ·∇H. (I1b)

Here

B∗ .
= B +

mc

q
U∇× b̂

︸ ︷︷ ︸
δB∗

, (I2a)

B∗ .
= b̂ ·B∗ = B +

mc

q
U b̂ ·∇× b̂. (I2b)

Velocity integrals introduce B∗ as the Jacobian of the transformation from par-
ticle to gyrocenter coordinates:

∫
dv f →

∫
dµ dU B∗ F ≡

∫
B∗ F. (I3)

As we know from the work of Scott & Smirnov (2010) and the approximate
calculation in Sec. 4.2, two terms contribute to the toroidal momentum con-
servation: c−1〈Pψ〉, and Pϕ‖ .

=
∑

s(mn)s
∫
B∗FUbϕ. We will split the time

derivatives of each of those into various pieces, then show how most of those
cancel when the two terms are added together. First, one has

1

c

∂〈Pψ〉
∂t

= −1

c

∑

s

(nq)s

〈∫
B∗FV ψ

〉
(I4a)

= −1

c

∑

s

(nq)s

〈∫
F

(
Bψ
∗U +

c

q
(b̂×∇H)ψ

)〉
(I4b)

≡ Ṗ‖ + δṖ‖ + Ṗ⊥. (I4c)

Here Ṗ‖ ∼ BψU , δṖ‖ ∼ δBψ
∗U , and Ṗ⊥ ∼ (b̂×∇H)ψ. The Ṗ‖ term (parallel

streaming along the field line) vanishes because the ψ component is required
and B ·∇ψ = 0. For δṖ‖, we use Eqs. (I2a) and (A22b) to find

(∇× b̂)ψ =
1

J

(
∂bϕ
∂θ

− ∂bθ
∂φ

)
=

1

J

∂bϕ
∂θ

, (I5)

where axisymmetry was used. Thus

δṖ‖ = −
∑

s

(nm)s

〈∫
FU2J−1∂θbϕ

〉
. (I6)

Also, from Eq. (A18b), one has (b̂×∇H)ψ = J−1(bθ∂ϕH − bϕ∂θH), so

Ṗ⊥ = −
∑

s

ns

〈∫
FJ−1(bθ∂ϕH − bϕ∂θH)

〉
. (I7)
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Now let us evaluate 〈Ṗϕ‖〉. We use the conservative form of the GKE,

∂(B∗F )
∂t

+∇ · (B∗FV ) +
∂

∂U
(B∗FU̇) = 0, (I8)

and find

∂〈Pϕ‖〉
∂t

= −
∑

s

(nm)s

〈∫
Ubϕ

(
∇ · (B∗FV ) +

∂

∂U
(B∗FU̇)

)〉
. (I9)

For the first term, use ∇ · (sA) = (∇s) ·A + s∇ ·A to pull the bϕ inside the
divergence (at the price of an extra term). For the second term, integrate by
parts in U . Then

〈Ṗϕ‖〉 = −
∑

s

(nm)s

〈
∇ ·

∫
B∗FV Ubϕ

〉
+
∑

s

(nm)s

〈∫
B∗FUV ·∇bϕ

〉

︸ ︷︷ ︸
χ̇‖ + δχ̇‖ + χ̇⊥

+
∑

s

(nm)s

〈∫
B∗FU̇bϕ

〉

︸ ︷︷ ︸
Q̇‖ + δQ̇‖

. (I10)

(The pieces χ̇‖, δχ̇‖, and χ̇⊥ arise by writing V = U b̂ + V⊥; they are defined

explicitly below.) The first term can be written as −V ′−1∂ψ(V
′Γψϕ‖), which is

one of the terms that survives in the conservation law. Each of the second and
third terms have various pieces, as indicated.

We have

χ̇‖
.
=
∑

s

(nm)s

〈∫
FU2B ·∇bϕ

〉
. (I11)

Now
B ·∇bϕ = Bi∂ibϕ = Bθ∂θbϕ = J−1∂θbϕ. (I12)

Thus

χ̇‖ =
∑

s

(nm)s

〈∫
FU2J−1∂θbϕ

〉
= −δṖ‖. (I13)

This demonstrates the first cancellation: χ̇‖ + δṖ‖ = 0.
Now consider

δχ̇‖
.
=
∑

s

(nm)s

〈∫
FU2δB∗ ·∇bϕ

〉
. (I14)

We have δB∗ ∝ U∇× b̂. The dot product with the curl can be conveniently
represented [Eq. (A23)] as the determinant (specialized for axisymmetry)

(∇× b̂) ·∇bϕ = J−1

∣∣∣∣∣∣

∂ψbϕ ∂θbϕ 0
∂ψ ∂θ 0
bψ bθ bϕ

∣∣∣∣∣∣
= 0. (I15)
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It is fortunate that this term vanishes by itself because it is the only term that
involves a factor of U3.

Next,

Q̇‖
.
= −

∑

s

ns

〈∫
F (B ·∇H)bϕ

〉
. (I16)

We have B ·∇H = Bθ∂θH +Bϕ∂ϕH (and Bθ = J−1), so

Q̇‖ = −
∑

s

ns

〈∫
F (J−1∂θH +Bϕ∂ϕH)bϕ

〉
. (I17)

The first term of this cancels against the second term of Ṗ⊥ [Eq. (I7)]. Thus

Ṗ⊥ + Q̇‖ = −
∑

s

ns

〈∫
F (J−1bθ +Bϕbϕ)∂ϕH

〉
. (I18)

Now one has bθ = Bθ/B = JB2
pol/B [Eq. (B3)] and Bϕbϕ = BϕBϕ/B =

B2
tor/B. Thus J−1bθ +Bϕbϕ = (B2

pol +B2
tor)/B = B and

Ṗ⊥ + Q̇‖ = −
∑

s

ns

〈∫
BF∂ϕH

〉
. (I19)

This is close to the term in ∂ϕH that survives in the momentum conservation
law, except that we are expecting the full Jacobian B∗ instead of B. Fortunately
there are more terms.

We have

χ̇⊥
.
=
∑

s

ns

(
mc

q

)

s

〈∫
FU b̂×∇H ·∇bϕ

〉
. (I20)

Now

b̂×∇H ·∇bϕ = J−1

∣∣∣∣∣∣

∂ψbϕ ∂θbϕ 0
bψ bθ bϕ
∂ψH ∂θH ∂ϕH

∣∣∣∣∣∣
(I21a)

= J−1[bϕ(∂θbϕ)(∂ψH)− bϕ(∂ψbϕ)(∂θH)

+ (bθ∂ψbϕ − bψ∂θbϕ)∂ϕH ]. (I21b)

Also,

δQ̇‖
.
= −

∑

s

ns

(
mc

q

)

s

〈∫
FU(∇× b̂ ·∇H)bϕ

〉
. (I22)

Now

∇× b̂ ·∇H = J−1

∣∣∣∣∣∣

∂ψH ∂θH ∂ϕH
∂ψ ∂θ 0
bψ bθ bϕ

∣∣∣∣∣∣
(I23a)

= J−1[(∂θbϕ)(∂ψH)− (∂ψbϕ)(∂θH) + (∂ψbθ − ∂θbψ)∂ϕH ].
(I23b)
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Upon adding χ̇⊥ and δQ̇‖ and using Eq. (75), one finds that the terms in ∂ψH
and ∂θH cancel. For the remaining terms, recognize that

b̂ ·∇× b̂ = J−1

∣∣∣∣∣∣

bψ bθ bϕ
∂ψ ∂θ 0
bψ bθ bϕ

∣∣∣∣∣∣
. (I24)

The sum of the remaining terms is proportional to the negative of this; upon
using Eq. (I2b), one finds

χ̇⊥ + δQ̇‖ = −
∑

s

ns

〈∫
FδB∗∂ϕH

〉
. (I25)

This is just what one needs to get the full Jacobian:

Ṗ⊥ + Q̇‖ + χ̇⊥ + δQ̇‖ = −
∑

s

ns

〈∫
B∗F∂ϕH

〉
. (I26)

Thus, in summary, one has

1

c

∂〈Pψ〉
∂t

= Ṗ‖ + δṖ‖ + Ṗ⊥, (I27a)

∂〈Pϕ‖〉
∂t

= − 1

V ′

∂

∂ψ
V ′Γψϕ‖ + (χ̇‖ + δχ̇‖ + χ̇⊥) + (Q̇‖ + δQ̇‖), (I27b)

and

∂(c−1〈Pψ〉+ 〈Pϕ‖〉)
∂t

= − 1

V ′

∂

∂ψ
V ′Γψϕ‖ + Ṗ‖︸︷︷︸

0

+ (δṖ‖ + χ̇‖)︸ ︷︷ ︸
0

+ δχ̇‖︸︷︷︸
0

+ [(Ṗ⊥ + Q̇‖) + (χ̇⊥ + δQ̇‖)]︸ ︷︷ ︸

−
∑

s

ns

〈∫
B∗F ∂ϕH

〉
. (I28)

I.2 Writing the pure Reynolds stress in conservative form

At this point we have recovered the most important intermediate equation in
the calculations of Scott & Smirnov. It remains to be shown that the last
term on the right-hand side of Eq. (I28) can be written as a divergence. Scott
& Smirnov demonstrated that by relating the ordinary derivative ∂ϕH to the
functional derivative of H with respect to potential, then recognizing that the
Euler–Lagrange equation for potential eliminated all nonconservative terms.
Brizard & Tronko (2011) used a different (but equivalent) technique. They
observed that the gyrocenter Hamiltonian can be expressed in terms of the
pushforward transformation: HG = H0 + q(T∗)−1φ. Now

(T∗)−1φ(X) = φ(X + ρǫ), (I29)

105



where ρǫ is given as a series whose lowest-order term coincides with the usual
gyroradius vector. An expansion in small ρǫ then gives75 (Brizard & Tronko,
2011, Eq. (117))

∑
n

∫
F

(
∂HG

∂ϕ

)
= ρG∂ϕφ

+

(∑
nq

∫
F 〈ρǫ〉

)
·∇∂ϕφ+

1

2

(∑
nq

∫
F 〈ρǫ ρǫ〉

)
: ∇∇∂ϕφ+ · · · .

(I30)

Now the exact polarization is given by Eq. (32), also an expansion in ρǫ. For the
terms of O(ρǫ) or smaller, one can move all gradients to the left at the price of
correction terms and establish that the sole nonconservative term involving ρǫ
is exactly the divergence of the polarization. Ultimately, one finds

∑
n

∫
F

(
∂HG

∂ϕ

)
= (ρG −∇ ·P)∂ϕφ

+∇ ·
[
P∂ϕφ+

1

2

(∑
nq

∫
F 〈ρǫ ρǫ〉

)
·∇∂ϕφ+ · · ·

]
.

(I31)

If the truncation of the Hamiltonian in the kinetic equation is at O(ǫn) and
terms through O(ǫm) are retained in Poisson’s equation, then the nonconserva-

tive term in Eq. (I31) is (∇ · P [m] − ∇ · P [n−1])∂ϕφ. When both the kinetic
equation and Poisson’s equation are derived variationally from the same La-
grangian with a Hamiltonian truncated at O(ǫn), then m = n − 1 and the
(approximate) quasineutrality condition annihilates the nonconservative term;
one arrives at a properly local conservation law. Otherwise, there is a mismatch
and a nonconservative term remains. For example, if one retains second-order
drifts in the kinetic equation (n = 2) and also second-order terms in Poisson’s

equation (m = 2), a conservative residual ∇ · P [2]∂ϕφ = O(ǫ3) remains, as
demonstrated explicitly in the slab calculation of Parra & Catto (2010a).

J Detailed analysis of the gyrokinetic conserva-

tion law for toroidal angular momentum

From Appendix I as well as the Noether methods employed by Scott & Smirnov
(2010) and later by Brizard & Tronko (2011), one has the exact result

∂(〈Pϕ‖〉+ c−1〈Pψ〉)
∂t

+
1

V ′

∂

∂ψ
V ′(Γψϕ‖ + Γψϕ⊥) = 0, (J1)

75In obtaining the final result, the ∂ϕ has been commuted past the pushforward. This can
be justified (A. Brizard, private communication, 2013).
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where the parallel–perpendicular Reynolds stress is

Γψϕ‖
.
=
∑

s

(nm)s

〈∫

P

FV ψv‖bϕ

〉
(J2)

and the pure Reynolds stress is

Γψϕ⊥ ≡ Γ
.
=
∑

s

ns

〈∫

P

F

(
∂H

∂E

)ψ
∂φ

∂ϕ

〉
+ · · · . (J3)

From the discussion in Sec. 2.2, we know that the particle momentum fluxes
must be O(ǫ3) for gyro-Bohm scaling in the low-flow ordering. It is clear that
that ordering applies as well to the gyrocenter fluxes. Now the integrands of
both Γψϕ‖ and Γψϕ⊥ derive from the gyrocenter HamiltonianH and the gyrocenter

PDF F , so the question is how accurately those quantities must be calculated.

J.1 The parallel–perpendicular Reynolds stresses

We have

Γψϕ‖
.
=
∑

s

(nm)s

〈∫

P

B∗FV ψUbϕ
〉
, (J4)

where we have explicitly inserted the Jacobian B∗. Here the gyrocenter drift is

V = B−1∗
(
B∗U +

c

q
b̂×∇H

)
, (J5)

where

B∗ .
= B +

mc

q
U∇× b̂ ≡ B + δB∗, (J6a)

B∗ .
= b̂ ·B∗ = B +

mc

q
U b̂ ·∇× b̂. (J6b)

Since Bψ = 0, one has

Γψϕ‖ =
∑

s

(nm)s

〈∫

P

FUbϕ[δB∗U + (c/q)b̂×∇H ]ψ
〉
. (J7)

Now (∇× b̂)ψ is the coefficient of eψ in Eq. (A22b) (with ∂ϕ = 0 for axisym-
metric geometry):

(∇× b̂)ψ = J−1∂θbϕ. (J8)

Also, (b̂×∇H)ψ is the coefficient of eψ in Eq. (A19):

(b̂×∇H)ψ = J−1(bθ∂ϕH − bϕ∂θH). (J9)

Thus

Γψϕ‖ =
∑

s

(nm)s

(
c

q

)〈
J−1

∫

P

FUbϕ[mU
2∂θbϕ + (bθ∂ϕH − bϕ∂θH)]

〉
. (J10)
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We write F as a zeroth-order part F0(ψ) plus a perturbation δF , where δF is
taken to be O(ǫ). For the F0(ψ) contribution, the ∂ϕH term vanishes under
the flux-surface average (the J−1 nicely cancels the J in the definition of the
average, and the bi’s are independent of ϕ). The first term, ∝ bϕ∂θbϕ = 1

2∂θb
2
ϕ,

also vanishes for F0. For F0, one is thus left with a term ∝ −F0Ub
2
ϕ∂θH →

F0U∂θ(b
2
ϕ)H after integration by parts under the flux-surface average. The

θ derivative is O(ǫ) since it acts on background geometry with macroscopic
variation. Therefore, one needs to use no smaller than H2 in order to obtain
a result of O(ǫ3). Note that the contributions from H0 and H1 are nominally
larger. One has H0 = 1

2mU
2+µB; since B depends on θ, there is a contribution

from H0. The integral
∫
FU either vanishes or is taken to be of first order.

Thus the contribution from H0 is nominally of second order. The contribution
from H1 is second order as well.

Since δF = O(ǫ), it is easy to see that all contributions from δF to Γψϕ‖ are

nominally of second order. Furthermore, one needs to use no smaller than H2

in order to recover O(ǫ3). Note that the second-order terms need to become
smaller by one order in order to recover gyro-Bohm scaling. This can be argued
on the basis of symmetry arguments.

J.2 The pure Reynolds stresses

Now we discuss

Γψϕ⊥
.
=
∑

s

ns

〈∫

P

F

(
∂H

∂E

)ψ
∂φ

∂ϕ

〉
+ · · · . (J11)

This behaves somewhat differently than Γψϕ‖ because evaluating it with F0(ψ)

does not change the nominal order of the integrand.

J.2.1 The nominal size of the pure Reynolds stresses

Focus on the explicit (dipolar) terms displayed in Eq. (J11). There is no con-
tribution of H1 to the derivative with respect to E because H1 = qφ+O(∇2

⊥φ)
and derivatives with respect to ∇2

⊥φ are taken care by another unwritten term
in Eq. (J11). Assume that the explicit E dependence of H2 is written as

H2 =
1

2
N

(0)
EE

: EE +N
(1)
BE

·E + · · · . (J12)

Here N
(1)
BE

involves macroscopic gradients of the magnetic field and is O(ǫ). The
unwritten terms in Eq. (J12) would be of second order but do not involve E
explicitly; for example, they could be quadratic in gradients of the background
magnetic field, involve FLR corrections like (∇2

⊥φ)
2, etc. One then has

∂H2

∂E
= N

(0)
EE

·E +N
(1)
BE

= O(ǫ). (J13)
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Similar results hold at higher order. Eq. (J13) demonstrates the obvious fact
that differentiation with respect to E reduces the order by one.

We shall denote the contribution to Γψϕ⊥ ≡ Π from Hn as Π[n] (the bracketed
superscript implies that the actual order in ǫ is yet to be determined because
flux-surface or statistical averaging can change the order). Thus one has

Π[2] ∼
∫

P

〈FEψ∂ϕφ〉, (J14)

where here Eψ is a proxy for the ψ component of Eq. (J13). One may apply a
cumulant expansion76 to the average:

〈FEψ∂ϕφ〉 = 〈〈F 〉〉〈〈Eψ〉〉 〈〈∂ϕφ〉〉︸ ︷︷ ︸
0

+ 〈〈F 〉〉〈〈Eψ∂ϕφ〉〉+ 〈〈Eψ〉〉〈〈F∂ϕφ〉〉 + 〈〈∂ϕφ〉〉︸ ︷︷ ︸
0

〈〈FEψ〉〉

+ 〈〈FEψ∂ϕφ〉〉. (J15)

The terms in 〈〈∂ϕφ〉〉 = 〈∂ϕφ〉 vanish under the flux-surface average (or by
statistical symmetry of the turbulence). One has 〈〈F 〉〉 = 〈F 〉 = F0(ψ). Thus

〈FEψ∂ϕφ〉 = F0(ψ)︸ ︷︷ ︸
O(1)

〈δEψ∂ϕδφ〉︸ ︷︷ ︸
O(ǫ2)

+ 〈Eψ〉︸ ︷︷ ︸
O(ǫ)

〈δF ∂ϕδφ〉︸ ︷︷ ︸
O(ǫ2)

+ 〈δF δEψ∂ϕδφ〉︸ ︷︷ ︸
O(ǫ3)

. (J16)

Here we note that the δφ’s must be at the short scales, where eδφ/Te = O(ǫ)],
and that δF = O(ǫ). The last two terms are already O(ǫ3), and these stem
from H2. But the first term is O(ǫ2). There are now two possibilities:

1. The Reynolds stress R[2] .= 〈δEψ∂ϕδφ〉 is in fact of second order even in
the low-flow ordering. In that case the assumption of gyro-Bohm scaling
is false. All physics follows from no more than H2; H3 is not needed.

2. R[2] dominantly vanishes due to some underlying symmetry. Within a
standard power-law expansion to measure the size of the symmetry break-
ing, this implies that R = O(ǫ3), which is consistent with the low-flow
gyro-Bohm scaling.

We assume that possibility 2 is realized; we expand on this assumption in Ap-
pendix K. It is then clear that a third-order term R[3] = O(〈δE2∂ϕδφ〉) will arise
from H3 in the same way as R(2) arose from H2. There is no reason to expect

76Formally, the Fourier transform of a PDF is a moment generating function. The logarithm
of that transform is a cumulant generating function. Properties of the logarithm lead to the
rule relating nth-order moments and cumulants (Kubo, 1962), which is that the nth-order
moment should be partitioned into all possible products of cumulants of nth order or lower
such that the sum of the cumulant orders in any one term equals n. If two random variables
are statistically independent, any cumulant involving them vanishes.
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that that term will also drop an order by symmetry. Therefore, it appears that
H3 may contribute to the gyrocenter momentum flux.

This general argument is based on the explicit term in formula (J11). It
is not complete because it does not proceed from an explicit form of H3. In
principle, it could happen that while an arbitrary H3 behaves as suggested
above, all physically relevant H3’s have special properties. However, an explicit
example suggests otherwise. Consider formula (35) from Idomura (2012),

H3 ∝ 1

4
(∇φ ·∇)|∇φ|2 (J17)

(∇ ≡ ∇⊥). (This is a special case valid only in the cold-ion limit.) Be-
cause this involves second derivatives on φ, one must also consider the “other
terms” in Eq. (J11). Scott & Smirnov (2010) derive those terms by assum-
ing the dependence H(φ,∇φ,∇2φ). We consider the more general dependence
H(φ, ∂iφ, ∂i∂jφ) and find that the divergence term in the representation of the
flux associated with ∂ϕH [see, for example, Eq. (I31)] is replaced by

∂i

(
∂H

∂(∂iφ)

∂φ

∂ϕ
+
∂P ij

∂φ
∂jφ+ (∂jP

ij)
∂φ

∂ϕ

)
, (J18)

where (temporarily ignoring flux-surface averages)

P ij
.
= − ∂H

∂(∂i∂jφ)
. (J19)

One has

H3 =
1

4
∂kφ∂k(∂lφ∂

lφ) =
1

2
∂kφ∂lφ∂

k∂lφ. (J20)

Then
∂H3

∂(∂iφ)
= ∂lφ∂

i∂lφ (J21)

and

P ij
.
= − ∂H3

∂(∂i∂jφ)
= −∂iφ∂jφ. (J22)

Also,
∂jP

ij = −(∂j∂
iφ∂jφ+ ∂iφ∂j∂

jφ). (J23)

The first term cancels against Eq. (J21). Thus one is left with the second term
of Eq. (J18) and the last term of Eq. (J23). For definiteness, consider the last
term. That contributes a flux proportional to

〈
F∂ψφ∇2φ

∂φ

∂ϕ

〉
. (J24)

That has the same form as the explicit term in Eq. (J11) except for an extra
factor of ∇2φ. That new factor changes sign under the symmetry transforma-
tion T. Thus, whereas under T the explicit term in Eq. (J11) changes sign
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(and thus vanishes in the absence of symmetry breaking), formula (J24) is un-
changed under T. It is thus also of third order. This is an example of the general
argument that says that H3 should be necessary in general.

In the work of Scott & Smirnov (2010), the authors concluded that a consis-
tent, energy- and momentum-conserving theory could be obtained by retaining
no more than H2. That is correct, but it does not conflict with our conclusions
above. One could use essentially any H2 and still have a theory that conserved
energy and momentum; as emphasized by Scott & Smirnov, that is the virtue
of gyrokinetic field theory, in which both the kinetic equation and the Maxwell
equations derive from the same action functional. But consistency does not
imply that all physical processes are included or that the physics of the model
Hamiltonian has anything to do with reality. If it is true that H3 must be in-
cluded, the implication is that physics processes described by H3 compete on
equal footing with other terms stemming from H0, H1, and H2 to describe the
macroscopic transport of momentum in the low-flow ordering.

J.2.2 Are the contributions from H3 smaller than they appear?

No argument has been advanced77 to show that a symmetry of the underlying
turbulence will make R(3) = O(ǫ4). However, it is possible that other specific
properties of H3 may make its contribution to Γ smaller than it nominally
appears to be.

Example: A simple fluid model:

To illustrate some of the points about symmetry and structure of the third-
order Hamiltonian, in this section we discuss a simple fluid model that captures
some of the features of the full problem. We do not suggest that predictions of
this model apply literally to the much more complicated tokamak problem; it
merely serves as an example to motivate further analysis.

Consider an x–y–z coordinate system with x being a direction of inhomo-
geneity, z being a statistically homogeneous direction of mean flow, and y being
a periodic coordinate. We will just discuss a general flow; however, if one wishes
to think of that as an E ×B flow, then in this model B would be in the y di-
rection (i.e., purely poloidal).

Assume the random flow obeys

∂tu+ u ·∇u+ D̂u = δf(t) (J25)

with u and δf being purely in the x and z directions and ∇ · u = 0 (i.e.,
we are considering a 2D, nonzonal flow). δf is a zero-mean stirring force (not
necessarily Gaussian) that replaces the stirring associated with linear instability,

and D̂ is a positive-definite linear dissipation operator. Let 〈. . . 〉 denote an
ensemble average over the turbulence. By the assumptions, one has statistical
homogeneity in y and z, so ensemble averages can depend at most on x. We

77B. Scott (private communication, 2013) believes that an argument exists. However, the
details have not been communicated to us.
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have ignored pressure forces in this equation. We do not believe that is relevant
for the points we wish to make, which are rather general in nature.

If boundary effects are ignored, a microscopic symmetry of Eq. (J25) is

T: t → t, (J26a)

x→ −x (J26b)

z → z, (J26c)

ux → −ux, (J26d)

uz → uz (J26e)

provided that δfx → −δfx and δfz → δfz under the transformation. Periodicity
in the y direction replaces the up–down symmetry in a tokamak.

The average of Eq. (J25) is

∂t〈u〉+ ∂x(〈ux〉〈u〉) + ∂x(〈δux δu〉) + D̂〈u〉 = 〈δf〉 = 0. (J27)

A mean flow can be excited through either a boundary condition or various
kinds of forcing. First, let us apply a boundary condition as it is done in planar
Couette flow, by moving the top surface (at x = 1

2a) relative to the bottom one
at x = − 1

2a in the z direction at speed U :

uz

(
1

2
a

)
=

1

2
U, uz

(
−1

2
a

)
= −1

2
U. (J28)

To develop an analogy to the low-flow gyrokinetics problem, one may take U =
O(ǫ). One is interested in 〈uz〉. From ∇ · 〈u〉 = 0 and translational symmetry
in z, it follows that ∂x〈ux〉 = 0. Since ux must vanish at the walls, one concludes
that 〈ux〉 = 0. Then

∂t〈uz〉+ ∂xΓ + D̂〈uz〉 = 0, (J29)

where the Reynolds stress
Γ
.
= 〈δux δuz〉 (J30)

has appeared. This quantity changes sign under T. However, one cannot con-
clude that Γ vanishes for this problem. The wall boundary condition introduces
an asymmetry that induces a nonvanishing stress. One way of saying this is
that the macroscopic boundary condition does not obey the microscopic sym-
metry in x. That is, if one were to change a → −a in Eq. (J28), one would
have to change U → −U in order that the constraint on uz remained invariant.
However, that conflicts with the requirement that z velocities remain unchanged
under the transformation.

(We will return later to discuss internal rather than boundary forcing.)
More quantitatively, one can attempt to evaluate Γ by considering the fluc-

tuations, which exactly obey

∂tδu+ δu ·∇〈u〉+ 〈u〉 ·∇δu+∇ · (δu δu− 〈δu δu〉) + D̂δu = δf (J31)
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or, because 〈u〉 = 〈uz〉(x)ẑ,

∂tδu+ δux∂x〈uz〉ẑ + 〈uz〉∂zδu+∇ · (δu δu− 〈δu δu〉) + D̂δu = δf . (J32)

Let us consider δuz:

∂tδuz + δux∂x〈uz〉+ 〈uz〉∂zδuz +∇ · (δu δuz − 〈δu δuz〉) + D̂δuz = δfz. (J33)

In the spirit of renormalized turbulence theory, the terms not involving 〈uz〉
(the ‘eddy–eddy interactions’) are represented via a response function ĝ :

ĝ −1δuz = −(δux∂x〈uz〉+ 〈uz〉∂zδuz) + δfz, (J34)

or, upon ignoring an initial-condition term,

δuz = −ĝ (δux∂x〈uz〉+ 〈uz〉∂zδuz) + ĝ δfz. (J35)

(Note that ĝ integrates over a lagged time.) This gives

Γ = −〈δuxĝ δux〉∂x〈uz〉 − 〈δuxĝ ∂zδuz〉〈uz〉+ 〈δuxĝ δfz〉. (J36)

For the first term, substitute a turbulence autocorrelation time τac for ĝ . That
gives a positive-definite viscosity coefficient µ

.
= 〈δu2x〉τac. If one invokes the mi-

croscopic symmetry on the last two terms, one can argue that they vanish. The
result Γ = −µ∂x〈uz〉 shows how the macroscopic boundary condition breaks
the microscopic symmetry (and the influence of that boundary condition is felt
throughout the domain; it does not just extend over a thin boundary layer).

What about the size of higher-order cumulants? There is no direct analog
of a third-order Hamiltonian in this problem, but one can ask about the kind
of cumulant to which a Hamiltonian theory would lead. One representive term
(which would arise from the cold-ion limit) would be

Γ[3] ∼
〈
δuxδuz

(
∂δuz
∂x

− ∂δux
∂z

)〉
, (J37)

the parenthesized term being proportional to the y component of vorticity. This
term is invariant under the microscopic symmetry, so its size is unclear at this
point. However, upon integrating by parts and using ∇ · δu = 0, one has

Γ[3] =
1

2

〈
δux

∂δu2z
∂x

− δuz
∂δu2x
∂z

〉
(J38a)

=
1

2

(
∂x〈δuxδu2z〉 −

〈
∂δux
∂x

δu2z

〉
− ∂z〈δuzδu2x〉+

〈
∂δuz
∂z

δu2x

〉)
(J38b)

=
1

2

(
∂x〈δuxδu2z〉+

〈
∂δuz
∂z

δu2z

〉
− ∂z〈δuzδu2x〉 −

〈
∂δux
∂x

δu2x

〉)
(J38c)

=
1

2

(
∂x〈δuxδu2z〉+

1

3
∂z〈δu3z〉 − ∂z〈δuzδu2x〉 −

1

3
∂x〈δu3x〉

)
. (J38d)
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The terms in ∂z vanish by the translational invariance in the z direction. The
terms in ∂x are of fourth order, not third, because the ∂x acts on an averaged
quantity, and all such quantities have at most only weak, macroscopic spatial
variation. Thus Γ[3], which looked like it might be of the same order as Γ[2] ≡ Γ,
is actually negligible.

Now ask what happens when one removes the wall forcing. Even in the
absence of an initial 〈uz〉, there could be an intrinsic contribution to Γ from the
stirring: Γ ∝ 〈δfx δfz〉. Under the simplest assumption, that would vanish due
to the microscopic symmetry. But within the context of this simple model, one
can impose a small correlation, of order ǫ. (In reality, that would again come
from some sort of macroscopic symmetry breaking.) Then one would obtain
an intrinsic stress of order ǫ2 × ǫ = ǫ3. That stress comes from Γ[2], not Γ[3].
(One could also discuss pinch terms in the same way; cf. the α effect in MHD
turbulence.)

H3 contributions:

Similar manipulations can be applied to the cold-ion limit of terms arising
in H3. As an example, consider again the formula (J24). Written in a local
Cartesian coordinate system, that becomes 〈∂xφ∂zφ (∂2x + ∂2z )φ〉. This can be
manipulated into the same form as Eq. (J38d) with the definitions δux = −∂yφ
and δuz = ∂xφ. This term is therefore expected to be very small, in agreement
with the numerical results of Idomura (2012).

Unfortunately, such manipulations do not appear to work for FLR terms,
whose expansion involves (∇2

⊥φ)
n, including n > 1. No argument has yet been

given why those terms should be smaller than they nominally appear to be.

K Example of Near-Cancellation of Lower-Order
Terms

As we have discussed in several places, the reason that higher-order terms can
be important is that the momentum flux from lower-order terms experiences
near-cancellations that make the net flux of higher order than they at first
appear to be. Here we demonstrate in a concrete way the possibility of that
occurring. We consider a slab limit for simplicity, where x̂ corresponds to the
radial coordinate and ŷ is the binormal direction (the direction perpendicular to
both the radial direction and the magnetic field direction ẑ). (One can consider
this as a rigorous limit for an infinitely elongated, large-aspect-ratio tokamak, so
that the magnetic field is vertical and the binormal direction is toroidal.) Upon

denoting the flux-surface and ensemble/time average by 〈. . .〉 = L−1
y

∫ Ly

0
dy . . .

(with an implied ensemble or time average) and using the lowest-order E ×B
drift for the radial drift velocity, one finds that the mean flux-surface average
of the right-hand side of Eq. (105) is

RHS =
∂

∂x

∑

s

(nq)s
c

B

∫
dv

〈
Fs
∂φ

∂y

〉
. (K1)
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Since E×B drifts are of order ǫcs, the nominal order of this term appears to be
∼ ǫnqcs/L. However the equilibrium component of Fs0 gives no net contribution
since 〈Fs0 ∂φ/∂y〉 = Fs0〈∂φ/∂y〉 = 0, so only the smaller fluctuating component
involving δFs ∼ ǫFs0 contributes to this flux. Thus this term now appears to
be of order ǫ2nqcs/L. This is much larger than the mean flux-surface average
of the LHS of Eq. (105), which was shown in Sec. 2.2.2 to be of order ǫ4nqcs/L
if a low-flow gyro-Bohm ordering holds. There are two key steps to show that
the actual order of the RHS term is in fact smaller by another factor of ǫ2.

The first step starts by noting that one can use the quasineutrality equation
(104) to eliminate the guiding-center charge density in terms of the polarization
term to get

RHS = − ∂

∂x

(
ni0eρ

2
s

ec

TeB

〈
(∇2

⊥φ)
∂φ

∂y

〉)
.

where we have pulled the leading factor of the ion density ni out of the flux-
surface average for simplicity, replacing it with the equilibrium density ni0 (this
is also done in some forms of the gyrokinetic Poisson equation implemented in
certain codes). Upon expanding the Laplacian ∇2

⊥ = ∂2x + ∂2y and using the

identities 〈(∂2yφ)∂yφ〉 = 1
2 〈∂y(∂yφ)2〉 = 0 and 〈(∂2xφ)∂yφ〉 = ∂x〈(∂xφ)∂yφ〉 −

〈(∂xφ)∂y(∂xφ)〉 = ∂x〈(∂xφ)∂yφ〉, one gets

RHS = − ∂

∂x

(
ni0eρ

2
s

ec

TeB

∂

∂x

〈
∂φ

∂x

∂φ

∂y

〉)
.

Because a gradient has now been pulled outside the flux-surface/ensemble aver-
age, which varies only on the slower equilibrium scale ∂/∂x ∼ 1/L instead of on
the faster turbulence scale ∂φ/∂x ∼ φ/(ǫL), this term is now of apparent order
ǫ3nqcs/L, one order smaller than it previously seemed. Note that the quantity
inside the angle brackets is of the form of a Reynolds stress, ∝ 〈δvyδvx〉. At
this point we make contact with the simple fluid model discussed in Sec. J.2.2.

The second key step is to note that δvx and δvy are very weakly correlated,
so that while the ensemble average of 〈δvyδvx〉 appears to be nominally of order
ǫ2c2s, in fact δvyδvx almost averages to zero, resulting in the ensemble aver-
age 〈δvyδvx〉 actually being of order ǫ3c2s. This near-cancellation is illustrated
physically by the eddies shown in Fig. 4.

One way to break the symmetry of these eddies is if there is an existing back-
ground sheared flow. One can think of this as a two-step process in which eddies
pointing in the radial direction are created in a decorrelation time τc ∼ L/cs
by the background turbulence drive, but then are subjected for a decorrelation
time to a background shear flow with a shearing rate ∂vy0/∂x ∼ ǫcs/L. This
results in eddies with a tilt angle of δθ ∼ τc ∂vy0/∂x ∼ ǫ. Thus the mean mo-
mentum flux is of order 〈δvxδvy〉 ∼ 〈δθ|δvx|2〉 ∼ ǫ3c2s, one factor of ǫ smaller
than its nominal order.

Another way to see the weak correlation between δvy and δvx is to consider
a fluid estimate for the evolution of the binormal flow in the presence of a
background sheared flow, ∂δvy/∂t = −δvx∂vy0/∂x − δvy/τc, where the first
term on the RHS is a linear driving term and the second term is a decorrelation
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Figure 4: Illustration of the cancellation of momentum flux for symmetrically dis-
tributed eddies. For the top eddy that is tilted counterclockwise, δvx and δvy are
both positive in the lower half of the eddy, while δvx and δvy are both negative in the
upper half of the eddy, so the momentum flux δvxδvy from this eddy is positive. For
the bottom eddy that is tilted clockwise, the reverse happens, so its momentum flux
is negative. In the absence of effects (like up–down asymmetry) that would break the
symmetry, there is no preferred direction, so eddies tilted either way are equally likely
and the mean momentum flux 〈δvxδvy〉 averages to 0.

model of the nonlinear term. This gives δvy ∼ τcδvx∂vy0/∂x ∼ τcδvxǫcs/L in
the low-flow ordering, again giving 〈vyvx〉 ∼ ǫ3c2s. This is the same argument
that was given somewhat more formally in Sec. J.2.2.

Idomura (2012) refers to a diamagnetic shear mechanism described by
(Camenen et al., 2011) that might give a stronger tilt to the eddies, with a
tilt angle δθ ∼ ǫ1/3. This is based on high-order ‘1/n’ corrections (of order
ǫ ∼ ρ/L) from the radial envelope equation for the ballooning representation.
While this is an interesting hypothesis, it is based on only linear/quasilinear
calculations and has not yet been demonstrated nonlinearly. There are other
examples where it is known that higher-order 1/n corrections are not relevant to
the nonlinear dynamics (basically because nonlinear effects are much stronger
than the weak linear corrections that affect a formal radial eigenmode struc-
ture). For example, they sometimes predict a linear radial mode width that
scales as

√
ρL, while nonlinearly the eddies break up and have a radial width
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that scales with ρ when one is sufficiently deep into the small-ρ/L gyro-Bohm
regime. [Also, if the effect of weak diamagnetic shear is somehow amplified to
have a stronger fractional order, one might wonder if other weak terms (such as
from H3) also have a stronger effect than one first believes.]

L Excerpts from papers related to momentum

conservation

There is no better way to understand the historical development of the momentum-
conservation topic than to read the authors’ original words. Here we include
a sampling, in some cases appending some remarks to place the excerpt in the
context of the present report.

L.1 Excerpt from Parra (2009) — “Extension of gyroki-
netics to transport time scales”

“In recent years, several groups have begun to build codes that evolve
the full distribution function, without splitting it into a slowly varying
Maxwellian and a fast, fluctuating piece. These simulations, known as
full f models, are employing the traditional gyrokinetic formulation. In
this thesis, I will argue that this approach is inadequate since it is unable
to solve for the self-consistent radial electric field that is crucial for the
turbulence.”

Remark: See Table 1 and our discussion in Sec. 5.1 for Parra’s
summary of the various approaches.

To be clear, it is not the case that a full-f model is theoretically
unable to solve for the radial electric field. Rather, it is that
working it out to the requisite order is onerous and probably
impractical.

L.2 Excerpts from Catto et al. (2008) — “Electrostatic
turbulence in tokamaks on transport time scales”

This is the first mention of the hybrid fluid–kinetic description.

1. “The quasineutrality equation used in [the] more familiar gyrokinetic de-
scriptions is unable to ensure intrinsic ambipolarity in the axisymmetric,
long radial wavelength limit. . . . In our hybrid description the global
electric field behavior is not an issue because intrinsic ambipolarity is au-
tomatically recovered in the appropriate axisymmetric limit since finite
orbit polarization effects are correctly retained by the ion inertial term in
the total momentum conservation equation and by the charge conservation
or vorticity equation.”
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Remark: The phrase “more familiar gyrokinetic descriptions”
presumably refers to those that use a kinetic equation correct
only to first order in ǫ, i.e., those that just use an H1.

2. “Flux surface averaging ∇ · J = 0 and integrating once in ψ gives the
global ambipolarity constraint 〈J ·∇ψ〉ψ = 0 . . . .”

3. “Note that we must not improperly determine the axisymmetric radial
electric field by adjusting it until 〈nV ·∇ψ〉ψ ≈ 0 or 〈J ·∇ψ〉ψ = 0, as is
sometimes mistakenly done in tokamaks.”

Remark: This remark is explained in more detail in excerpt 2
of Sec. L.4.

L.3 Excerpts from Parra & Catto (2008) — “Limitations
of gyrokinetics on transport time scales”

1. “The electric field is of special importance since the poloidal zonal flow . . .
induced by its radial structure can act to control the saturated amplitude
of turbulence.”

Remark: This is one important (well-known) reason for wor-
rying about the (radial) electric field. In later publications, the
focus turns more to the connection between the radial field and
the profile of toroidal rotation.

2. “[The quasineutrality condition

Z2e

M

∫
d3v ϕ̃

(
∂fi
∂E0

+
1

B

∂fi
∂µ0

)
≈ −ZN̂i(r, t)− ne(r, t), (L1)

where ϕ̃
.
= ϕ(x + ρ) − 〈ϕ(x + ρ)〉ζ , ] may be used to calculate φ for

wavelengths of the order of the gyroradius, including zonal flow, as is
normally done in δf turbulence codes such as GS2. . . or GYRO. . . . However,
the equation is not useful for long wavelengths. In the limit k⊥L ∼ 1, the
average of φ̃ holding r, v‖ and v⊥ fixed becomes the same order as terms
already neglected . . . As a result, the terms on the left side of [Eq. (L1)]
vanish to the order δ the equation has been derived, leaving

ZN̂i(r, t) = ne(r, t) (L2)

as the quasineutrality equation. This equation does not depend on φ
explicitly, and even though it could depend implicitly through the ion and
electron distribution functions, that dependence should be negligible to
O(δ2ne) due to intrinsic ambipolarity [36, 37]. Therefore, we cannot solve
for the electrostatic potential at long wavelengths.”
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Remark: This is their basic argument. The “terms neglected”
include higher-order terms in the pullback transformation, i.e.,
more precise representations of the polarization.

3. See their Eq. (55), which contains the spurious term commented on by
Lee & Kolesnikov (2009). For PC’s comment on Lee & Kolesnikov, see
Parra & Catto (2009a).

Remark: PC explain how they obtained this term, which is
proportional to T−1

i in Parra & Catto (2009a). It arises from an
unusual choice of energy variable and leads to a representation
of the physics in which the Ti → 0 limit may not be taken. That
restriction should not be present in the final GK–Poisson system
[and was not present in the formulation used by Dubin et al.
(1983)] because one should be able to straightforwardly extract
cold-ion physics (which is nonsingular).

4. “It might seem that keeping more terms in the gyrokinetic equation to
obtain a higher order solution for the distribution fnction would be enough
to find the potential, but finding such a gyrokinetic equation for general
geometry is difficult and its solution by numerical means requires high
numerical precision since terms smaller than O(δ2fM ) must be recovered
without appreciable error to calculate the full axisymmetric potential to
lowest order.”

L.4 Excerpts from Catto et al. (2009) — “Limitations, in-
sights and improvements to gyrokinetics”

1. “We have recently shown that rather than evaluating quasineutrality to
higher order it is more sensible to replace it by a toroidal angular momen-
tum or vorticity conservation equation that does not require as accurate
an ion distribution function . . . .”

Remark: There are clear advantages to such hybrid approaches.
One concern is the status of overall conservation laws for the hy-
brid system. (Clearly the form of the momentum conservation
equation is automatically satisfied.)

2. “Satisfying the neoclassical relation for the parallel ion flow

Vi‖ =
ITi
MΩi

(
kB2

〈B2〉ψ
∂

∂ψ
lnTi −

∂

∂ψ
ln pi −

e

Ti

∂Φ

∂ψ

)
(L3)

merely verifies that the ion gyrokinetic equation is being solved consis-
tently to the order employed in codes, where the numerical coefficient k
depends on the regime of collisionality. Equation (L3) simply provides a
relation between ∂Φ/∂ψ and Vi‖, and confirms that parallel ion momen-
tum is being satisfied through leading order in the pressure anisotropy. It
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does not determine the radial electric field (unless it is mistakenly and ar-
bitrarily assumed that the parallel ion flow can be set to zero or specified
in some other ad hoc manner) and satisfying it is not a test that the correct
rotation profile is obtained. Equation (L3) places such a strong constraint
on the relation between the parallel ion flow and the global radial electric
field that it has recently been shown to be valid even at long (nonzonal
flow) wavelengths in turbulent plasmas [Parra & Catto (2009c)]. In brief,
the ambipolarity constraint 〈nVi ·∇ψ−nVe·∇ψ〉ψ = 0 should be automat-
ically satisfied to very high order for any long wavelength radial electric
field and should not determine the global axisymmetric radial electric field.

“Gyrokinetic simulations using quasineutrality with polarization effects re-
tained through second order in the ion poloidal gyroradius (ρpol) expansion
and a guiding centre density valid only through first order in ρpol deter-
mine an incorrect global axisymmetric radial electric field that is different
from the one obtained by conservation of toroidal angular momentum. Ef-
fectively, such a gyrokinetic quasineutrality treatment adds charge sources
and sinks that result in an incorrect global axisymmetric radial electric
field. Indeed, in the pioneering banana regime evaluation of Rosenbluth
et al [15] quasineutrality is not employed to determine the radial electric
field since the second order in (ρpol/L)

2 corrections to quasineutrality ex-
actly cancel. Instead, toroidal angular momentum conservation is used to
determine the radial electric field at higher order in the combined gyrora-
dius and collisionality expansions. More generally, a carefully constructed
full f turbulent gyrokinetic code should result in no net radial transport
of toroidal momentum through order (ρpol/L)

2 in the absence of sources
and sinks if quasineutrality is self-consistently treated to the same or-
der [Parra & Catto (2009c)]. In the remainder of this section we give an
improved and streamlined proof that ∂Φ/∂ψ cannot be determined in a
turbulence-free tokamak without a moment approach if the ion distribu-
tion function is only known to second order in the gyroradius expansion.

“A moment procedure for the electron particle flux using C1e{f1e} =
C1ee{f1e} + Cei{f1e} with C1ee the electron–electron operator and
Cei{f1e} = Lei{f1e − (m/Te)V‖iv‖f0e} the unlike electron–ion Lorentz
operator gives the electron radial particle flux as 〈nVe · ∇ψ〉ψ =
(mcI/E)〈B−1

∫
d3v v‖C1e{f1e − (m/Te)V‖iv‖f0e}〉ψ, with f1e the leading

order correction to the electron Maxwellian f0e and Te and m the elec-
tron temperature and mass. The electron drift kinetic equation can be
written as v‖n · ∇ge = C1e{ge + (Iv‖/Ωe)(∂f0e/∂ψ) − (m/Te)V‖iv‖foe}
with ge = f1e − (Iv‖/Ωe)(∂f0e/∂ψ). The ∂Φ/∂ψ drive terms in the colli-
sion operator cancel, making ge independent of the radial electric field so
that 〈nVe ·∇ψ〉ψ = (mcI/e)〈B−1

∫
d3v v‖C1e{ge + (Iv‖/Ωe)(∂f0e/∂ψ)−

(m/Te)V‖iv‖feo}〉ψ cannot depend on the radial electric field to order

(ρi/L)
2 since Cii/Cee ∼ νii/νee ∼ (m/M)1/2 ∼ ρi/L is normally assumed,

with νii and νee the ion–ion and electron–electron collision frequencies.

“Alternately, a moment description can be used to further demonstrate
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that intrinsic ambipolarity must be satisfied to order ρ2i /L
2 and demon-

strate that it is the flux surface average of conservation of toroidal angular
momentum that must give the radial electric field (pressure anisotropy
does not enter this constraint). To order ρ2i /L

2 the cross field viscosity
is diamagnetic (and so collisionless to lowest order) and the radial flux
of toroidal angular momentum may be written in terms of the ion gyro-
viscosity πig (within small up–down asymmetric contributions) as [16, 17]
〈R2∇ζ ·πig ·∇ψ〉ψ = 〈(MI/B)

∫
d3v v‖f1ivdi ·∇ψ〉ψ, with R the major ra-

dius. Inserting f1i = gi− (Iv‖/Ωi)(∂f0i/∂ψ), using 〈
∫
d3v f0i(v‖/B)2v‖n ·

∇(v‖/B)〉ψ = 0, and recalling gi depends only on ∂Ti/∂ψ gives a ∂Φ/∂ψ
independent result for 〈R2∇ζ · πig · ∇ψ〉ψ. Hence, we have proven that
the correct neoclassical radial electric field cannot be determined directly
from toroidal angular momentum conservation knowing fi to second or-
der. As a result, a direct determination of ∂Φ/∂ψ requires knowing the
ion distribution function through third order in the gyroradius expansion,
or a moment approach as outlined in section 4 must be used to save an
order.

“By considering a steady-state theta pinch using a model collision op-
erator, we have explicitly shown that gyrokinetic quasineutrality cannot
determine the axisymmetric, long radial wavelength electrostatic poten-
tial to order ρ2i /L

2 [1]. Here we have proven the same situation occurs in
axisymmetric tokamaks. In modern gyrokinetic treatments intrinsic am-
bipolarity is violated when the ion distribution function is retained to only
order ρi/L in the guiding centre density, while being kept to order ρ2i /L

2

in the finite orbit polarization term in gyrokinetic quasineutrality. How-
ever, when fi is kept to order ρ2i /L

2 in both places, the radial electric field
does not enter and therefore cannot be determined, and no inconsistency
arises. To determine this axisymmetric radial electric field higher order ef-
fects must be retained. The same conclusion holds in a turbulent tokamak
but the proof is substantially more involved [Parra & Catto (2009c)].”

Remark: This is probably the most detailed and coherent ex-
planation of the ‘intrinsic ambipolarity’ issue. Focus on the last
paragraph, where they state

“In modern gyrokinetic treatments intrinsic ambipolar-
ity is violated when the ion distribution function is re-
tained to only order ρi/L in the guiding centre density,
while being kept to order ρ2i /L

2 in the finite orbit po-
larization term in gyrokinetic quasineutrality.”

They intend this remark to apply to neoclassical theory, but it
can also be considered for the turbulent case. Then note:

• The cancellations that give rise to the 〈F ∂ϕH〉 term happen
for any H .

• Reducing the 〈F ∂ϕH〉 term is therefore crucial. Note that
to get even lowest-order polarization one must keep H2. So
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then the question becomes: If one uses at most H2 in the
kinetic equation, does one retain enough information to get
the third–order terms in the momentum conservation law?
Parra & Catto say no for a full-f formulation, and we agree.

L.5 Excerpts from Parra & Catto (2009a) — “Comment
on “On higher order corrections to gyrokinetic Vlasov-
Poisson equations in the long wavelength limit” [Phys.
Plasmas 16, 044506 (2009)]”

1. “. . . that higher order terms are formally smaller does not invalidate our
conclusions because we find that the formally larger terms cancel at long
wavelengths.”

2. “. . . the higher order terms are crucial for the final result because the
lower order polarization density exactly cancels with other contributions
without determining the long wavelength radial electric field. Our second
order calculation for a nonturbulent θ-pinch in [Parra & Catto (2008)]
shows that the lowest order polarization density and the solution of the
second order gyrokinetic equation cannot determine the axisymmetric long
wavelength electrostatic potential. . . . The long wavelength, axisymmetric
piece of the electrostatic potential must remain undetermined unless the
ion distribution function is determined to higher order than second in
an expansion of the small ratio δi = ρi/L ≪ 1 of the ion gyroradius ρi
over the characteristic length L. Indeed, we have proven that there is no
implementable way to calculate this contribution to the potential directly
from quasineutrality; a fact that has been understood from drift kinetic
theory since at least the early 1970s (Rosenbluth et al., 1971; Hazeltine,
1974).

Remark: The word ‘implementable’ means ‘practically imple-
mentable.’

3. “The radial electric field can be obtained from two different equations,
namely, the gyrokinetic Poisson equation and the transport of momen-
tum. The transport of momentum determines the velocity profile and the
velocity profile is uniquely related to the long wavelength electric field.
These two approaches of obtaining the electric field will give conflicting
results at long wavelengths unless [the equation for ∂tρtot] is satisfied.
That is, the time derivative of the flux surface averaged charge density
〈e(Zni − ne)〉ψ must be obtained to the order of the right side, requiring
it to be very small and of order ∂〈e(Zni − ne)〉ψ/∂t ∼ δ4i enevti/L.”

Remark: For discussion of the relevance of fourth-order terms,
see Sec. 5.1.2.
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L.6 Parra & Catto (2009b) — “Gyrokinetic equivalence”

This paper compares the Hamiltonian approach of Dubin et al. with the recur-
sive methodology of Parra & Catto (2008); as expected, they find order-by-order
agreement. There are no explicit remarks about momentum conservation in this
paper.

L.7 Excerpts from Parra & Catto (2009c) — “Vorticity
and intrinsic ambipolarity in turbulent tokamaks”

1. “On the one hand, the toroidal rotation, determined by the radial electric
field, is believed to play an essential role in the creation and equilibrium
of regions of reduced turbulence like the pedestal and internal transport
barriers . . . . On the other hand, the poloidal zonal flow . . . induced by
the radial structure of the electric field can act to control the saturated
amplitude of turbulence.”

Remark: These are good reasons for worrying about the toroidal
rotation and the radial electric field. However, it is not necessar-
ily the case that the ordering discussed in this report is relevant
to all instances of pedestals and transport barriers.

2. “The distribution function required to directly obtain the viscosity is
higher order than second; the order at which intrinsic ambipolarity is
maintained.”

Remark: The order-by-order solution for the gyrocenter dis-
tribution function is given in detail by Calvo & Parra (2012).

3. “In particular, we are able to show that turbulence dominated tokamaks
are also intrinsically ambipolar, meaning that the distribution function is
required to at least third order in a gyroradius over scale length expansion
to determine the electric field from quasineutrality.”

Remark: See the previous comment.

L.8 Excerpt from Parra & Catto (2010a) — “Non-
physical momentum sources in slab geometry gyroki-
netics”

“We have shown that the Hamiltonian gyrokinetic formulation of
Dubin et al. (1983) results in a non-physical velocity profile in the low
flow ordering unless a proper momentum description is employed. If
quasineutrality or vorticity are used, it is necessary to keep some third
order corrections to [the potential Ψ] to recover the correct transport of
momentum. Employing the lowest order version of the same procedure, as
is done in full f gyrokinetic codes . . . , it is easy to derive that for Ψ ≈ φ
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the non-physical source of momentum becomes large enough to drive the
velocity to the high flow ordering.

“Note that in a slab, it is necessary to calculate the gyrokinetic drifts
up to O(δ3i vi) to recover the correct momentum equation in the low flow
ordering. . . . It might be surprising that the drifts are only needed up
to order δ3i vi in the drift ordering where in section 1 we argued that δ4i vi
terms were required. This simplification is a result of the special geometry
of the slab. In a collisionless slab, the flux surface averaged current density
due to the O(δ4i vi) drift is to O(δ

4
i enevi)

Ze

〈∫
dv f

(0)
i0

c

B

∂Ψ
(4)
0

∂y

〉

x

= 0, (L4)

since the lowest order piece of the distribution function f
(0)
i0 is independent

of y. In a tokamak, on the other hand, there are magnetic geometry effects
that may prevent such a concellation from happening.

“In conclusion, solving the quasineutrality equation for all the pieces of
the electric field, including the long wavelength pieces, in a tokamak re-
quires a gyrokinetic formulation that keeps the corrections to the drifts
up to order δ4i vti in the low flow ordering, . . . . Lagrangian formulations
keep drifts to order δ2i vti at most. We have shown for a slab that next
order corrections are required. The slab case shows how the electric field
obtained from quasineutrality introduces an artificial momentum source
that will accelerate the plasma in the y direction. The higher order correc-
tions to the drifts studied in this paper appear in general geometries, but
in addition there are magnetic geometry effects that make the equations
almost intractable to order δ2i vti, and hopelessly complicated to order δ3i vti
and δ4i vti. Therefore, trying to calculate all the contributions to the elec-
tric field employing a gyrokinetic quasineutrality equation is impractical.
Instead, the momentum transport equation should be explicitly solved to
determine the long wavelength velocity profile.”

Remark: The basic issue here is the offset between nth-order
effects in the kinetic equation and (n− 1)th-order effects in the
Poisson equation. That follows automatically from the varia-
tional approach to the gyrokinetic system.

From the second paragraph of the excerpt, one sees that the
status of the effects due to magnetic inhomogeneities was un-
clear at that time (they used the phrase “may prevent”). The
general form of the gyrocenter conservation law shows that the
third-order calculation is sufficient. Exactly how the cancella-
tions happen is detailed in Appendix I.

In defense of the (30-year-old) work of Dubin et al., they were
not interested in momentum conservation, and their equations
were intended to be integrated only over turbulence time scales.
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On the other hand, it is clear that they did not fully understand
the ordering issues, which were only clarified with the advent of
the Lagrangian field theory.

L.9 Excerpts from Parra & Catto (2010b) — “Transport
of momentum in full f gyrokinetics”

This is a recent invited APS talk by Parra, so it should contain a reasonably
up-to-date summary of his thinking.

1. “In quasineutrality, any small error in the calculation of a charge density
leads to large, nonphysical deviations in the radial electric field. These
deviations lead to a toroidal rotation profile that does not satisfy the
correct conservation equation for the toroidal angular momentum.”

2. “Any error in [the equation for the time rate of change of the charge]
appears as a nonphysical force added to [the conservation law of toroidal
angular momentum].”

3. “Another way of stating the problem is that the quasineutrality equation
gives the wrong long wavelength radial electric field. This incorrect radial
electric field then results in an incorrect toroidal rotation satisfying [the
balance between toroidal velocity, radial electric field, radial pressure gra-
dient, and poloidal velocity], but not satisfying the transport of toroidal
angular momentum. . . ”

4. “Thus, even though having some form of conservation of momentum may
be arguably better than not having any, . . . , the variational approach has
not solved the problem of the long wavelength electric field. It is necessary
to obtain the gyrokinetic equation to painfully high orders when using
quasineutrality, and even variational approaches cannot escape this fact.
Indeed, using a variational formulation may only hide the problem in an
incorrect transport of momentum.”

Remark: Scott & Smirnov showed that a consistent state-
ment of momentum conservation can be obtained by using any
Hamiltonian in the action principle (see excerpt 1 of Sec. L.11).
That H could be truncated to any power in ǫ. It could also
contain terms that have nothing to do with the true gyrokinetic
physics. A ‘consistent’ conservation law is not sufficient.

L.10 Excerpts from Parra & Catto (2010c) — “Turbulent
transport of toroidal angular momentum in low flow
gyrokinetics”

1. “Full f simulations . . . , on the other hand, employ a gyrokinetic quasineu-
trality equation that has not been derived to high enough order in an ion
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gyroradius over scale length expansion to solve for the correct long wave-
length radial electric field . . . . The problem is that the radial electric
field profile and the toroidal rotation in the plasma are uniquely related
to each other. Due to axisymmetry, the toroidal rotation is determined ex-
clusively by the radial transport of toroidal angular momentum, contained
in the small off-diagonal components of the viscosity and Reynolds stress.
Obtaining these small terms makes the calculation extremely challenging
and not feasible when using the gyrokinetic quasineutrality equation.”

2. “. . . the O(δ2i fM,i) correction to the ion distribution function is not self-
consistently calculated in general magnetic geometries.”

Remark: As of that time, the full H2, including all effects of
magnetic inhomogeneity, had not even been derived, let alone
implemented in a code. The calculation was first done by
Parra & Calvo (2011).

L.11 Excerpt from Scott & Smirnov (2010) — “Energetic
consistency and momentum conservation in the gy-
rokinetic description of tokamak plasmas”

1. “The main results are valid for any ordering scheme which might be used
since their demonstration does not depend on ordering, but uses the gen-
eral functional form of the Hamiltonian on the field variables. . . .”

2. “. . . for small scale fluctuation ordering, the magnetic flux term (Aϕ/c),
which is formally of order ǫ−1 . . . , does not introduce terms in H at higher
order than already are necessary to evaluate the momentum transport
equation. This result . . . is sufficient to allay recent concerns about the
integrity of the treatment of momentum conservation and transport by
gyrokinetics which have been voiced by others (Parra & Catto, 2008).”

Remark: As we have discussed, a third-order Hamiltonian is
required for a complete calculation of the momentum fluxes,
so the concerns of Parra & Catto remain. If the cancellation
referred to by Scott & Smirnov had not occurred, one would
have had to work to fourth order.

L.12 Excerpt from Brizard & Tronko (2011) — “Exact
momentum conservation laws for the gyrokinetic
Vlasov-Poisson equations”

“The major difference between previous works . . . and our work is that the
gyrokinetic polarization . . . considered here includes contributions from
the guiding-center and gyrocenter phase-space transformations, while pre-
vious works have neglected the guiding-center polarization contribution
(which is of the same order as the gyrocenter contribution).”
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L.13 Excerpt from Parra & Calvo (2011) — “Phase-space
Lagrangian derivation of electrostatic gyrokinetics in
general geometry”

“The complete calculation [of the gyrokinetic Hamiltonian] to order ǫ2

has not been done for a general static magnetic field . . . so far. In the
most common Lagrangian formulation. . . , the calculation is done in two
steps: first, the turbulent electromagnetic fields are ignored and only the
background magnetic field is considered, giving the drift kinetic equation;
in the second step, the turbulent electromagnetic fields are added and
the corresponding corrections are calculated. . . . In the first step, the
equations are expanded in the small parameter ǫ ∼ ρ/L, whereas in the
second step, they are expanded in ǫφ ∼ Zeφ/Mv2t . The expansion in ǫ
is only performed to first order because the next order results are very
tedious to calculate. The expansion in ǫφ is continued to second order
because the pieces quadratic in φ are needed to have an energy-like in-
variant. In the expansion in ǫφ, the fact that there has been a previous
expansion in ǫ is ignored, and as a result the terms of order ǫ ǫφ are never
calculated. The missing terms of order ǫ2 and ǫ ǫφ are comparable to the
terms of order ǫ2φ according to the gyrokinetic ordering. . . , making this
expansion consistent only when ǫφ ≫ ǫ. In addition, since the cross-terms
that contain both the background magnetic field and the turbulent elec-
trostatic potential, of order ǫ2 and ǫ ǫφ, are always neglected when the
two-step method is presented, it is not obvious how to calculate them fol-
lowing that procedure. In this paper, we present the complete phasespace
Lagrangian calculation with the standard gyrokinetic ordering. . . , empha-
sizing the selfconsistent calculation of the terms of order ǫ2 and ǫ ǫφ. In
the gyrokinetic equations that result from the new Lagrangian, the mag-
netic geometry effects and the fluctuating potential appear together in
the second-order terms, showing that geometry and turbulence cannot be
separated and dealt with independently. Our main result is [an] explicit
expression for the second-order gyrokinetic Hamiltonian . . . . It clearly
exhibits the interplay between geometry and turbulence inherent to gy-
rokinetic theory, possessing terms of three types: terms quadratic in the
electrostatic potential, terms that include both the electrostatic potential
and the magnetic geometry and terms that are purely geometrical.”

Remark: Parra & Calvo calculate the second-order Hamilto-
nian using a particular choice of representation (symplectic at
first order; Hamiltonian at second order). For a discussion of
equivalent representations, see Brizard & Tronko (2012).
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L.14 Excerpt from Calvo & Parra (2012) — “Long-
wavelength limit of gyrokinetics in a turbulent toka-
mak and its intrinsic ambipolarity”

1. “The gyrokinetic equations have typically been solved only for the turbu-
lent components of the distribution function and the electrostatic poten-
tial (we restrict our discussion to electrostatic gyrokinetics), but in recent
years growing supercomputer capabilities have motivated an increasing
interest in the extension of gyrokinetic calculations to longer wavelengths
and transport time scales. However, at least for [an axisymmetric] toka-
mak, this is a subtle issue, as F. I. Parra and P. J. Catto have discussed in
a series of papers [Parra & Catto (2008, 2009c,a, 2010b,a,c)]. The main
lines of the argument can be stated in a succinct way. The perpendicular
component of the long-wavelength piece of the plasma velocity depends
on the long-wavelength radial electric field through the E×B drift. The
momentum conservation equation can be used to obtain the three com-
ponents of the velocity, and from it, derive the radial electric field. The
plasma velocity is to lowest order parallel to the flux surfaces because
the radial particle drift is small. Then, the poloidal and toroidal compo-
nents of the momentum conservation equation are sufficient to calculate
the velocity to the order of interest, and by decomposing it in parallel and
perpendicular components, the radial electric field can be obtained by
making the perpendicular component equal to the E × B drift plus the
diamagnetic velocity. The poloidal component of the velocity is strongly
damped by collisions because the poloidal direction is not a direction of
symmetry. The poloidal velocity is determined by setting the collisional
viscosity in the poloidal direction equal to zero, giving a poloidal velocity
proportional to the ion temperature gradient unless collisionality is really
small and turbulence can compete with the collisional damping . . . . Un-
fortunately, the toroidal component of the momentum equation that would
give the toroidal component of the velocity and completely determine the
radial electric field is identically satisfied to order ǫ2 by any toroidal veloc-
ity. . . . Since gyrokinetic equations are customarily derived and solved to
order ǫ, the tokamak long-wavelength radial electric field cannot be cor-
rectly obtained from the standard set of gyrokinetic equations available in
the literature.

“In the limit in which the velocity is of the order of the diamagnetic veloc-
ity, known as low flow limit, the calculation of the radial flux of toroidal
angular momentum, which we need to compute the radial electric field, is
especially demanding because this flux is smaller than the radial flux of
particles and energy in the expansion in ǫ. The low flow limit is relevant in
the study of intrinsic rotation . . . . In [Parra & Catto (2010c); Parra et al.
(2011a)], a method to calculate the toroidal angular momentum conserva-
tion equation in the low flow limit to the order in which it is not identically
zero is proposed. With the toroidal angular momentum equation to this
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order, it is possible to obtain the toroidal rotation and hence calculate
the radial electric field. The formula for the radial flux of toroidal angu-
lar momentum in [Parra & Catto (2010c); Parra et al. (2011a)] is given
as a sum of several integrals over the first- and second-order pieces of the
distribution functions and the electrostatic potential. To avoid calculat-
ing these second-order pieces in complete detail, a subsidiary expansion
in Bp/B ≪ 1 was employed, where Bp is the poloidal magnetic field and
B is the total magnetic field. With the derivation for the first time of
the gyrokinetic equations and change of coordinates in general magnetic
geometry up to second order [Parra & Calvo (2011)], it has become possi-
ble to calculate the second-order pieces without resorting to a subsidiary
expansion. In this article, we present the equations that need to be solved
to obtain the long-wavelength second order pieces.

“Carrying the expansion to second order in ǫ at long wavelengths also
clarifies the issues with the radial electric field . . . pointed out at the
beginning of this introduction. Along with the derivation of the equa-
tions we give an explicit proof of the indeterminacy of the radial electric
field, showing that it cannot be found from the long-wavelength gyroki-
netic Fokker–Planck and quasineutrality equations correct to second order.
This property, known as intrinsic ambipolarity, was first proven for neo-
classical transport . . . and it was shown to hold for turbulent tokamaks
in [Parra & Catto (2009c)] using the identical cancellation of the toroidal
angular momentum conservation equation to the order of interest. The in-
trinsic ambipolarity of purely turbulent particle fluxes was shown to hold
in [Sugama et al. (1996)], even electromagnetically and in general mag-
netic geometry (that is why the long-wavelength radial electric field in
non-quasisymmetric stellarators is determined from neoclassical theory).
This is, however, the first direct, explicit, and general proof for turbulent
tokamaks. Instead of resorting to the toroidal angular momentum equa-
tion, we write the long-wavelength equations order by order and show that
they can be solved for any radial electric field, leaving it undetermined.
Those readers who are familiar with the Chapman–Enskog results on the
derivation of fluid equations from kinetic theory . . . will find that the ap-
proach that we adopt at some stages of the proof is very similar. The
analogy becomes especially clear in Section 5.2. In previous sections the
long-wavelength Fokker-Planck and quasineutrality equations have been
derived up to second order. In Section 5.2 we inspect the second-order
piece of the long-wavelength Fokker-Planck equation and learn that it
possesses solvability conditions, i.e. the existence of solutions of this equa-
tion imposes constraints on lowest-order quantities. These constraints are
transport equations for particle and energy density. The way of obtaining
them and of showing that we have actually found all the solvability con-
ditions are the aspects particularly reminiscent of the Chapman-Enskog
techniques.”

2. “. . . we have given a complete proof that the long-wavelength tokamak
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radial electric field cannot be determined by simply using Fokker-Planck
and quasineutrality equations accurate to second order in the gyrokinetic
expansion parameter. In other words, we have proven that gyrokinetics
does not spoil the well-known neoclassical intrinsic ambipolarity property
of the tokamak.”
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M Notation

M.1 Basic physics symbols

– a –

a — minor radius

A(x, t) — Vector potential. B = ∇×A.

α — 1-form.

– b –

b̂ — Unit vector in direction of magnetic field: b̂
.
= B/B.

bϕ — Toroidal (covariant) component of b̂: bϕ
.
= b̂ · eϕ.

B(x, t), B(x, t) — Magnetic field. B
.
= |B|.

B∗ — Effective magnetic field in gyrokinetics: B∗ .
= B+(mc/q)U∇× b̂.

– c –

c — Speed of light.

cs — Sound speed: cs
.
= (ZTe/M)1/2.

Cs[f ] — The nonlinear collision operator for species s. ∂tf + · · · = −Cs[f ],
where Cs

.
=
∑

s′ Cs,s′ .

– d –

δA — The fluctuation of A around the mean: δA
.
= A− 〈A〉.

δF — Deviation of the gyrocenter PDF F from a given background F0:
F = F0 + δF .

δ(x− y) — Dirac delta function.

δf/δη(1) — Functional derivative of f [η] with respect to η. The fundamental
derivative is δη(1)/δη(1′) = δ(1 − 1′).

D — Diffusion coefficient.

DB — Bohm diffusion coefficient: DB
.
= cT/eB.

DgB — Gyro-Bohm diffusion coefficient: DgB
.
= (ρs/L)DB.

χ⊥ — Perpendicular dielectric permittivity:
χ⊥

.
= ρ2s/λ

2
De = ω2

pi/ω
2
ci ≫ 1.

– e –

e — A number approximately equal to 2.7 (Candlestickmaker, 1972).
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e — Magnitude of electronic charge. qe = −e.
ei — Basis vector: ei

.
= ∂ix. A vector v is represented as v = viei.

ei — Cobasis vector: ei
.
= ∇zi. A covector (1-form) α is represented as

α = αie
i.

ǫ — Gyrokinetic ordering parameter: ǫ
.
= ρs/L, where L is a

macroscopic perpendicular scale length.

E(x, t), E — Electric field vector; E
.
= |E|.

– f –

f(x,v, t) — Particle distribution function.

F (X, U, µ, t) — Gyrocenter distribution function.

F — Gyrocenter distribution function in extended phase space.

fM (v) — (Absolute) Maxwellian distribution:

fM (v)
.
= (2πv2t )

−
3
2 exp(−v2/2v2t ).

flM(x,v, t) — Local Maxwellian.
flM

.
= [n(x, t)/n][2πv2t (x, t)]

−3/2 exp[−[v − u(x, t)]2/2v2t (x, t)],
where v2t (x, t)

.
= T (x, t)/m.

– g –

g — Metric tensor. dl2 = gijdz
i dzj.

γ — Poincaré–Cartan differential 1-form: γ
.
= p · dq −H dt.

– h –

H — Hamiltonian.

Hn — nth-order term in the expansion of H in ǫ.

H — Gyrocenter Hamiltonian in extended phase space.

– i –

iX — Interior product with the vector field X .

I — Identity matrix or operator.

– j –

j(x, t) — Current density.

J0 — Bessel function of order zero.

J — Jacobian of the transformation to generalized spatial coordinates.

J — Jacobian of the gyrocenter phase-space transformation.
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J — Poisson tensor. The equations of motion are ż = J · ∂zH ≡ {z,H}
(for time-independent transformations).

– k –

kD — Debye wave number: k2D
.
=
∑
s k

2
Ds, where k

2
Ds

.
= 4π(ne2)s/Ts.

– l –

λD — The Debye length: λD
.
= k−1

D .

Ln, LT — Density and temperature scale lengths: L−1
n

.
= −∂x lnn,

L−1
T

.
= −∂x lnT .

Lw — Lie derivative in the direction of the vector field w.

Lw — Identical to the vector field w. The Lie transformation is
T = exp(w) ≡ exp(Lw).

Ln — ǫnwn, where wn is the nth-order vector field.

– m –

me, mi — Electron and ion masses.

µ, µ0 — Magnetic moment, and its lowest-order approximation.

µ — First adiabatic invariant: µ = µ0 + ǫµ1 + · · · .
M — Mach number.

– n –

n, ne, ni — Mean number density: n
.
= N/V .

ns(x, t) — Fluid density. ns(x, t) =
∫
dv nsfs(x,v, t).

N, Ns — Total number of particles.

N — Mean gyrocenter number density. N = n.

ν — Collision frequency.

– ω –

ω — Fundamental differential 2-form: ω = dγ; Lagrange tensor.

ωc, ωce, ωci — The gyrofrequency. ωcs
.
= qsB/msc.

– o –

O(ǫ) — Asymptotically of order ǫ.

– p –

p — Canonical momentum.
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P — The scalar pressure. In the Braginskii equations, P = nT .

P(x, t) — Stress tensor; see P(x, t).

ψ — Flux (radial) coordinate.

ϕ — Toroidal angle.

φ — Electrostatic potential.

P — Polarization vector. ρ = ρG −∇ ·P.

– q –

qs — Charge of species s. qe = −e.

– r –

R — Major radius.

ρ(x, t) — Charge density. ρ(x, t) =
∫
dv (nq)sfs(x,v, t).

ρe, ρi — Gyroradii: ρν
.
= vtν/ωcν for ν = e, i.

ρs — Sound radius: ρs
.
= cs/ωci. (The s subscript is in Roman, not

italic.)

ρ — Particle charge density. ρ = ρG −∇ ·P. The quasineutrality
condition is ρ = 0.

ρG — Gyrocenter charge density.

ρ — Gyroradius vector.

ρǫ — Lie-transformed gyroradius vector.

ρpol — Polarization charge density.

– s –

s — Species label.

– t –

Ts — Temperature of species s.

T — Lie transformation operator (or sometimes a symmetry
transformation).

T∗ — Pullback operator (on forms) induced from T by replacing L by L.

T∗ — Pushforward operator (on vectors). In the practical gyrokinetic
manipulations, T∗ = (T∗)−1.

– u –

us(x, t) — Fluid velocity. (nu)s(x, t) =
∫
dv nsvfs(x,v, t).
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uE — Fluid E ×B velocity.

U — Parallel gyrocenter velocity.

– v –

v — Particle velocity.

vt, vte, vti — Thermal velocity: vt
.
= (T/m)1/2.

V — Volume of system.

V ′ — Derivative of volume inside a flux surface. The flux-surface
average of a divergence is 〈∇ ·A〉 = V ′−1∂ψ(V

′〈Aψ〉).
Vds — Diamagnetic speed. Vds

.
= −cTs/esBLn.

Vpol — Polarization drift velocity: Vpol
.
= ω−1

c ∂t(cE⊥/B).

Vd — Gyrocenter drift.

– w –

w — Vector field: w = wi∂i. The basic Lie transformation is z = Tz
with T = exp(w) and wi = 1 +O(ǫ).

– x –

x, y — Vector positions in configuration space.

x, y, z — Cartesian components of x.

X — Gyrocenter position (lowest order).

– y –

– z –

Z — Atomic number; see ei. Charge neutrality demands that Zni = ne.

ζ — Gyrophase.

M.2 Miscellaneous notation

Ai — Contravariant components (or components of a vector).

Ai — Covariant components (or components of a 1-form).

Ã — The tilde implies that A is random or that it has dependence on
gyrophase.

A∗ — Pullback (in differential geometry).

A∗ — Pushforward (in differential geometry).
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〈A〉 — Ensemble average, or statistical mean, of A: A = 〈A〉+ δA. Also,
flux-surface average.

〈〈x y z〉〉 — Cumulant of x, y, and z.

A[f ] — Indicates functional dependence of A on f .

[A] — Dimensions of A.

A[n] — Bracketed superscripts indicated that the quantity is nominally
O(ǫn), without considering additional possible cancellations due to
averaging.

k̂ — Carets generally denote unit vectors: b̂
.
= B/|B|.

.
= — Definition.

≡ — Equivalent to:
.
= ≡ def

= .
(
n

k

)
— Binomial coefficient:

(
n
k

) .
= n!/[k! (n− k)!].
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